English
Karnataka Board PUCPUC Science Class 11

Can the potential difference across a battery be greater than its emf? - Physics

Advertisements
Advertisements

Question

Can the potential difference across a battery be greater than its emf?

Short Answer

Solution

The potential difference across a battery can be greater than its emf. When the battery is being charged. Basically, emf is the maximum potential difference between the terminals of a battery when the terminals are not connected externally to an electric circuit. Current flows in the closed circuit when the same battery is connected to an electric circuit. When current flows, the potential difference across the terminals of the battery is decreased as some potential drop due to its internal resistance.

Due to the internal resistance in the battery, the potential difference across it is less than its emf. However, for an ideal battery, potential difference and emf are equal.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Electric Current in Conductors - Short Answers [Page 196]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 10 Electric Current in Conductors
Short Answers | Q 17 | Page 196

RELATED QUESTIONS

The plot of the variation of potential difference across a combination of three identical cells in series, versus current is shown below. What is the emf and internal resistance of each cell ?


A battery of emf 12 V and internal resistance 2 Ω is connected to a 4 Ω resistor as shown in the figure.

(a) Show that a voltmeter when placed across the cell and across the resistor, in turn, gives the same reading.

(b) To record the voltage and the current in the circuit, why is voltmeter placed in parallel and ammeter in series in the circuit?


Distinguish between emf and terminal voltage of a cell.


A cell of emf 'E' and internal resistance 'r' is connected across a variable resistor 'R'. Plot a graph showing variation of terminal voltage 'V' of the cell versus the current 'I'. Using the plot, show how the emf of the cell and its internal resistance can be determined.


The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4 Ω, what is the maximum current that can be drawn from the battery?


A 10 V cell of negligible internal resistance is connected in parallel across a battery of emf 200 V and internal resistance 38 Ω as shown in the figure. Find the value of current in the circuit.


The equivalent resistance between points. a and f of the network shown in Figure 2 is :

a) 24 Ω

b) 110 Ω

c) 140 Ω

d) 200 Ω


Plot a graph showing variation of voltage vs the current drawn from the cell. How can one get information from this plot about the emf of the cell and its internal resistance?


A cell of emf E and internal resistance r is connected to two external resistance R1 and R2 and a perfect ammeter. The current in the circuit is measured in four different situations:

(i) without any external resistance in the circuit

(ii) with resistance R1 only

(iii) with R1 and R2 in series combination

(iv) with R1 and R2 in parallel combination

The currents measured in the four cases are 0.42 A, 1.05 A, 1.4 A and 4.2 A, but not necessarily in the order. Identify the currents corresponding to the four cases mentioned above.


Consider N = n1n2 identical cells, each of emf ε and internal resistance r. Suppose n1 cells are joined in series to form a line and n2 such lines are connected in parallel.

The combination drives a current in an external resistance R. (a) Find the current in the external resistance. (b) Assuming that n1 and n2 can be continuously varied, find the relation between n1, n2, R and r for which the current in R is maximum.


Find the equivalent resistance of the network shown in the figure between the points a and b.


How many time constants will elapse before the power delivered by a battery drops to half of its maximum value in an RC circuit?


A coil of resistance 100 Ω is connected across a battery of emf 6.0 V. Assume that the heat developed in the coil is used to raise its temperature. If the heat capacity of the coil is 4.0 J K−1, how long will it take to raise the temperature of the coil by 15°C?


Find the emf of the battery shown in the figure:


A conductor of length 'l' is rotated about one of its ends at a constant angular speed 'ω' in a plane perpendicular to a uniform magnetic field B. Plot graphs to show variations of the emf induced across the ends of the conductor with (i) angular speed ω and (ii) length of the conductor l.


Two cells of emfs approximately 5 V and 10 V are to be accurately compared using a potentiometer of length 400 cm.


Emf of a cell is ______.

Five cells each of emf E and internal resistance r send the same amount of current through an external resistance R whether the cells are connected in parallel or in series. Then the ratio `("R"/"r")` is:


Three cells, each of emf E but internal resistances 2r, 3r and 6r are connected in parallel across a resistor R.

Obtain expressions for (i) current flowing in the circuit, and (ii) the terminal potential differences across the equivalent cell.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×