English

At a point A, 20 metres above the level of water in a lake, the angle of elevation of a cloud is 30˚. The angle of depression of the reflection of the cloud in the lake, at A is 60˚. Find the distance of the cloud from A. - Mathematics

Advertisements
Advertisements

Question

At a point A, 20 metres above the level of water in a lake, the angle of elevation of a cloud is 30˚. The angle of depression of the reflection of the cloud in the lake, at A is 60˚.
Find the distance of the cloud from A.

Solution

Let AB be the surface of the lake and P be the point of observation such that AP = 20 metres. Let C be the position of the cloud and C’ be its reflection in the lake.

 Then CB = C’B. Let PM be perpendicular from P on CB.
Then m∠CPM=30º and m∠C'PM=60°
Let CM = h. Then CB = h + 20 and C’B = h + 20.

In ΔCMP we have,

`tan30^@="CM"/"PM"`

`1/sqrt3=h/"PM"`

`PM=sqrt3h....................(i)`

In ΔPMC' we have,

`tan 60^@="C'M"/"PM"`

`sqrt3="C'B+BM"/"PM"`

`sqrt3=(h+20+20)/"PM"................(ii)`

From equation (i) and (ii), we get

`sqrt3h=(h+20+20)/sqrt3`

3h=h+40

h=20m

Now,CB=CM + MB =h +20= 20+ 20 = 40.
Hence, the height of the cloud from the
surface of the lake is 40 metres.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) All India Set 3

RELATED QUESTIONS

A bus travels at a certain average speed for a distance of 75 km and then travels a distance of 90 km at an average speed of 10 km/h more than the first speed. If it takes 3 hours to complete the total journey, find its first speed?


The banks of a river are parallel. A swimmer starts from a point on one of the banks and swims in a straight line inclined to the bank at 45º and reaches the opposite bank at a point 20 m from the point opposite to the starting point. Find the breadth of the river


Two stations due south of a leaning tower which leans towards the north are at distance a and b from its foot. If α, β be the elevations of the top of the tower from these stations, prove that its inclination θ to the horizontal is given by `\text{cot }\theta =\frac{bcot alpha -a\cot \beta }{b-a}`


The angle of elevation of a cliff from a fixed point is θ. After going up a distance of k metres towards the top of cliff at an angle of φ, it is found that the angle of elevation is α. Show that the height of the cliff is metres


A vertically straight tree, 15 m high, is broken by the wind in such a way that its top just touches the ground and makes an angle of 60° with the ground. At what height from the ground did the tree break?


A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff of height 5 meters. At a point on the plane, the angles of elevation of the bottom and the top of the flag-staff are respectively 300 and 600. Find the height of the tower.


The angles of elevation of the top of a tower from two points at distance of 5 metres and 20 metres from the base of the tower and is the same straight line with it, are complementary. Find the height of the tower.


From the top of the tower  h metre high , the angles of depression of two objects , which are in the line with the foot of the tower are ∝ and ß (ß> ∝ ) cts . 

 


There are two windows in a house. A window of the house is at a height of 1.5 m above the ground and the other window is 3 m vertically above the lower window. Ram and Shyam are sitting inside the two windows. At an instant, the angle of elevation of a balloon from these windows is observed as 45° and 30° respectively. Find the height of the balloon from the ground.


Two vertical poles AB = 15 m and CD = 10 m are standing apart on a horizontal ground with points A and C on the ground. If P is the point of intersection of BC and AD, then the height of P (in m) above the line AC is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×