English

Below Fig Shows a Sector of a Circle, Centre O. Containing an Angle ๐œƒยฐ. Prove that Area of Shaded Region Is`R^2/2(Tantheta โˆ’(Pitheta)/180)` - Mathematics

Advertisements
Advertisements

Question

Below fig shows a sector of a circle, centre O. containing an angle ๐œƒ°. Prove that

Area of shaded region is`r^2/2(tantheta −(pitheta)/180)`

Solution

Given angle subtended at centre of circle = ๐œƒ

∠OAB = 90° [At joint of contact, tangent is perpendicular to radius]

OAB is right angle triangle

Cos ๐œƒ =`(adj.side)/(hypotenuse) =r/OB`⇒ ๐‘‚๐ต = ๐‘Ÿ sec ๐œƒ … … (๐‘–)

tan ๐œƒ =`(opp.side)/(adju.side)=AB/r`⇒ ๐ด๐ต = ๐‘Ÿ tan ๐œƒ … … . (๐‘–๐‘–)

Area of shaded region = (area of triangle) – (area of sector)

`= (1/2× OA × AB) −theta/360^@× pir^2`

`=1/2× r × r tan theta −r^2/2[theta/180^@× pi]`

=`r^2/2[tantheta −(pitheta)/180]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Areas Related to Circles - Exercise 13.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 13 Areas Related to Circles
Exercise 13.2 | Q 26.1 | Page 25
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×