рд╣рд┐рдВрджреА

Below Fig Shows a Sector of a Circle, Centre O. Containing an Angle ЁЭЬГ┬░. Prove that Area of Shaded Region Is`R^2/2(Tantheta тИТ(Pitheta)/180)` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Below fig shows a sector of a circle, centre O. containing an angle ЁЭЬГ°. Prove that

Area of shaded region is`r^2/2(tantheta −(pitheta)/180)`

рдЙрддреНрддрд░

Given angle subtended at centre of circle = ЁЭЬГ

∠OAB = 90° [At joint of contact, tangent is perpendicular to radius]

OAB is right angle triangle

Cos ЁЭЬГ =`(adj.side)/(hypotenuse) =r/OB`⇒ ЁЭСВЁЭР╡ = ЁЭСЯ sec ЁЭЬГ … … (ЁЭСЦ)

tan ЁЭЬГ =`(opp.side)/(adju.side)=AB/r`⇒ ЁЭР┤ЁЭР╡ = ЁЭСЯ tan ЁЭЬГ … … . (ЁЭСЦЁЭСЦ)

Area of shaded region = (area of triangle) – (area of sector)

`= (1/2× OA × AB) −theta/360^@× pir^2`

`=1/2× r × r tan theta −r^2/2[theta/180^@× pi]`

=`r^2/2[tantheta −(pitheta)/180]`

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 13: Areas Related to Circles - Exercise 13.2 [рдкреГрд╖реНрда реирел]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 13 Areas Related to Circles
Exercise 13.2 | Q 26.1 | рдкреГрд╖реНрда реирел

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×