Advertisements
Advertisements
Question
Compute the mode from the following data:
Class interval | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 |
Frequency | 3 | 8 | 13 | 18 | 28 | 20 | 13 | 8 | 6 | 4 |
Solution
Clearly, we have to find the mode of the data. The given data is an inclusive series. So, we will convert it to an exclusive form as given below:
Class interval | 0.5 – 5.5 | 5.5 – 10.5 | 10.5 – 15.5 | 15.5 – 20.5 | 20.5 – 25.5 | 25.5 – 30.5 | 30.5 – 35.5 | 35.5 – 40.5 | 40.5 – 45.5 | 45.5 – 50.5 |
Frequency | 3 | 8 | 13 | 18 | 28 | 20 | 13 | 8 | 6 | 4 |
As the class 20.5 – 25.5 has the maximum frequency, it is the modal class.
Now, `x_k = 20.5, h = 5, f_k = 28, f_k-1 = 18, f_k+1 = 20`
∴ Mode, `M_0 = x_k + {ℎ × ((f_k− f_k−1))/((2f_k− f_k−1−f_k+1))}`
`= 20.5 + {5 × ((28−18))/((2×28−18−20))}`
`= 20.5 + {5× 10/18}`
= (20.5 + 2.78)
= 23.28
Hence, mode = 23.28
APPEARS IN
RELATED QUESTIONS
The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.
Expenditure (in Rs) | Number of families |
1000 − 1500 | 24 |
1500 − 2000 | 40 |
2000 − 2500 | 33 |
2500 − 3000 | 28 |
3000 − 3500 | 30 |
3500 − 4000 | 22 |
4000 − 4500 | 16 |
4500 − 5000 | 7 |
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.
Number of cars | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 | 60 − 70 | 70 − 80 |
Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
Find the mode of the following distribution.
Class-interval: | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
Frequency: | 30 | 45 | 75 | 35 | 25 | 15 |
The following is the distribution of height of students of a certain class in a certain city:
Height (in cm): | 160 - 162 | 163 - 165 | 166 - 168 | 169 - 171 | 172 - 174 |
No. of students: | 15 | 118 | 142 | 127 | 18 |
Find the average height of maximum number of students.
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
Find the mode of the given data: 3.1, 3.2, 3.3, 2.1, 1.3, 3.3, 3.1
For the data 11, 15, 17, x + 1, 19, x – 2, 3 if the mean is 14, find the value of x. Also find the mode of the data
Find the mode of the following data:
Marks | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 |
Number of students | 22 | 38 | 46 | 34 | 20 |
For the following distribution
Marks | No. of students |
Less than 20 | 4 |
Less than 40 | 12 |
Less than 60 | 25 |
Less than 80 | 56 |
Less than 100 | 74 |
Less than 120 | 80 |
the modal class is?