Advertisements
Advertisements
Question
Determine the matrices A and B if they satisfy 2A – B + `[(6, - 6, 0),(- 4, 2, 1)]` = 0 and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`
Solution
2A – B + `[(6, - 6, 0),(- 4, 2, 1)]` = 0
A – 2B = `[(3, 2, 8),(-2, 1, -7)]`
2A – B = `- [(6, - 6, 0),(- 4, 2, 1)]` ......(1)
A – 2B = `[(3, 2, 8),(-2, 1, -7)]` .......(2)
(1) ⇒ 2A – B + `[(6, - 6, 0),(- 4, 2, 1)]`
(2) × 2 2A – 4B = `[(3, 2, 8),(-2, 1, -7)]`
Substuting 0 + 3B = `[(6, - 6, 0),(- 4, 2, 1)] - 2[(3, 2, 8),(-2, 1, -7)]`
3B = `[(- 6, 6, 0),(4, - 2, -1)] - [(6, 4, 16),(-4, 2, -14)]`
= `[(-6 - 6, 6 - 4, 0 - 16),(4 + 4, - 2 - 2, - 1 + 14)]`
3B = `[(- 12, 2, - 16),(8, -4, 13)]`
B = `1/3[(- 12, 2, - 16),(8, -4, 13)]`
Substituting for B in equation (1)
(1) ⇒ `2"A" - 1/3 [(- 12, 2, - 6),(8, -4, 13)] = - [(6, 6, 0),(- 4, 2, 1)]`
2A = `1/3[(- 1, 2, 16),(8,-4, 13)] - [(6, -6, 0),(-4, 2, 1)]`
= `[((-12)/3, 2/3, (-16)/3),(8/3, (-4)/3, 13/3)] - [(6, -6, 0),(-4, 2, 1)]`
= `[(-4 - 6, 2/3 + 6, (- 16)/3 - 0),(8/3 + 4, (-4)/3 - 2, 13/3 - 1)]`
= `[(- 10, (2 + 8)/3, (-16)/3),((8 + 12)/3, (-4 - 6)/3, (13 - 3)/3)]`
2A = `[(- 10, 20/3, (-16)/3),(20/3, (- 10)/3, 10/3)]`
A = `1/2[(- 10, 0/3, (- 16)/3),(20/3, (- 10)/3, 10/3)]`
A = `[(-5, 10/3, (-8)/3),(10/3, (-5)/3, 5/3)]`
Reqired values are
A = `[(-5, 10/3, (-8)/3),(10/3, (-5)/3, 5/3)]`
B = `1/3[(- 12, 2, - 16),(8, -4, 13)]`
APPEARS IN
RELATED QUESTIONS
Construct a 3 × 3 matrix whose elements are given by aij = `("i" + "j")^3/3`
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
Solve for x, y : `[(x^2),(y^2)] + 2[(-2x),(-y)] = [(5),(8)]`
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
For the given matrix A = `[(1, 3, 5, 7),(2, 4, 6, 8),(9, 11, 13, 15)]` the order of the matrix AT is
Which of the following can be calculated from the given matrices A = `[(1, 2),(3, 4),(5, 6)]`, B = `[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`,
(i) A2
(ii) B2
(iii) AB
(iv) BA
If A = `[(1, 2, 3),(3, 2, 1)]`, B = `[(1, 0),(2, -1),(0, 2)]` and C = `[(0, 1),(-2, 5)]` Which of the following statements are correct?
(i) AB + C = `[(5, 5),(5, 5)]`
(ii) BC = `[(0, 1),(2, -3),(-4, 10)]`
(iii) BA + C = `[(2, 5),(3, 0)]`
(iv) (AB)C = `[(-8, 20),(-8, 13)]`
Construct an m × n matrix A = [aij], where aij is given by
aij = `("i" - 2"j")^2/2` with m = 2, n = 3
Determine the value of x + y if `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I
If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(4, -2),(3, -5)]`
Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric
Choose the correct alternative:
If A and B are two matrices such that A + B and AB are both defined, then
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Choose the correct alternative:
If the points (x, – 2), (5, 2), (8, 8) are collinear, then x is equal to
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
If the matrix 'A' is both symmetric and strew symmetric then.
Let A = [aij] be a square matrix of order 3 such that aij = 2j – i, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ... + A10 is equal to ______.
If Aα = `[(cosα, sinα),(-sinα, cosα)]`, then which of following statement is TRUE?