Advertisements
Advertisements
Question
Differentiate the following:
y = `root(3)(1 + x^3)`
Solution
y = `root(3)(1 + x^3)`
y = `(1 + x^3)^(1/3)`
[y = f(g(x)
`("d"y)/("d"x)` = f'(g(x)) . g'(x)]
`("d"y)/("d"x) = 1/3 (1 + x^3)^(1/3 - 1) xx "d"/("d"x) (1 + x^3)`
`("d"y)/("d"x) = 1/3 (1 + x^3)^(- 2/3) (0 + 3x^2)`
`("d"y)/("d"x) = 1/3 1/(1 + x^3)^(2/3) xx 3x^2`
`("d"y)/("d"x) = x^2/(1 + x^3)^(2/3)`
= `x^2 (1 + x^3)^(- 2/3)`
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `tan x/x`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = cos (tan x)
Differentiate the following:
f(t) = `root(3)(1 + tan "t")`
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = tan (cos x)
Differentiate the following:
y = `5^((-1)/x)`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
Find the derivatives of the following:
`x^2/"a"^2 + y^2/"b"^2` = 1
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
Find the derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `tan^-1 x`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
`"d"/("d"x) ("e"^(x + 5log x))` is