Advertisements
Advertisements
Question
Does the temperature of a body depend on the frame from which it is observed?
Solution
No, the temperature of a body is not dependent on the frame from which it is observed. This is because atoms /molecules of matter move or vibrate in all possible directions. Increase in velocity at a particular direction of the container/ matter does not increase or decrease the overall velocity of the molecules/atoms because of the random collisions the entities suffer. So, there is no net rise in temperature of the system.
APPEARS IN
RELATED QUESTIONS
A pinhole is made in a hollow sphere of radius 5 cm whose inner wall is at temperature 727oC. Find the power radiated per unit area. [Stefan’s constant σ = 5.7 x 10-8 J/m2 s K4 , emissivity (e) = 0.2]
A metal ball cools from 64 °C to 50 °C in 10 minutes and to 42 °C in next 10 minutes. The ratio of rates of fall of temperature during the two intervals is _______.
The susceptibility of magnesium at 300 K is 2.4 x 10-5. At what temperature will the susceptibility increase to 3.6 x 10-5?
Answer the following:
There were two fixed points in the original Celsius scale as mentioned above which were assigned the number 0 °C and 100 °C respectively. On the absolute scale, one of the fixed points is the triple-point of water, which on the Kelvin absolute scale is assigned the number 273.16 K. What is the other fixed point on this (Kelvin) scale?
Which of the following pairs may give equal numerical values of the temperature of a body?
A person's skin is more severely burnt when put in contact with 1 g of steam at 100°C than when put in contact with 1 g of water at 100°C. Explain
The temperature of a solid object is observed to be constant during a period. In this period
(a) heat may have been supplied to the body
(b) heat may have been extracted from the body
(c) no heat is supplied to the body
(d) no heat is extracted from the body
A resistance thermometer reads R = 20.0 Ω, 27.5 Ω, and 50.0 Ω at the ice point (0°C), the steam point (100°C) and the zinc point (420°C), respectively. Assuming that the resistance varies with temperature as Rθ = R0 (1 + αθ + βθ2), find the values of R0, α and β. Here θ represents the temperature on the Celsius scale.
A railway track (made of iron) is laid in winter when the average temperature is 18°C. The track consists of sections of 12.0 m placed one after the other. How much gap should be left between two such sections, so that there is no compression during summer when the maximum temperature rises to 48°C? Coefficient of linear expansion of iron = 11 × 10–6 °C–1.
The volume of a glass vessel is 1000 cc at 20°C. What volume of mercury should be poured into it at this temperature so that the volume of the remaining space does not change with temperature? Coefficients of cubical expansion of mercury and glass are 1.8 × 10–6 °C–1 and 9.0 × 10–6 °C–1 , respectively.
A steel rod of length 1 m rests on a smooth horizontal base. If it is heated from 0°C to 100°C, what is the longitudinal strain developed?
Answer the following question.
Clearly, state the difference between heat and temperature?
Explain the meaning of heat and work with suitable examples.
Two objects are said to be in thermal contact if they can exchange heat energy.
Heat is measured in Celsius or centigrade.
The normal temperature of our body is 37°C.
The degree of hotness and coldness of a body is called ______.
An earthen pitcher loses 1 gm of water per minute due to evaporation. If the water equivalent of the pitcher is 0.5 kg and the pitcher contains 9.5 kg of water, calculate the time required for the water in a pitcher to cool to 28°C from the original temperature of 30°C. Neglect radiation effects. The latent heat of vaporization in this range of temperature is 580 Cal/gm and the specific heat of water is 1 Cal/gm°C.