Advertisements
Advertisements
Question
Draw a graph of the equation 2x - 3y = 15. From the graph find the value of:
(i) x, when y = 3
(ii) y, when x = 0
Solution
We have
2x - 3y = 15
⇒ -3y = 15 - 2x
⇒ 3y = 2x - 15
⇒ y = `(2x - 15)/(3)`
When x = -2
⇒ y = `-(19)/(3)`
= -6.34
When x = 0
⇒ y = `-(15)/(3)` = -5
When x = 2
⇒ y = `-(11)/(3)` = -3.66
x | -2 | -1 | 0 | 1 | 2 |
y | -6.34 | -5.66 | -5 | -4.34 | -3.66 |
Thus ordered pairs of 2x - 3y = 15 are {(-2, -6.34), (-1, -5.66), (0, -5),(1, - 4.34), (2, -3.66)}. Hence graph is a below.
(i) x, when y = 3
From graph we find that x = 12, when y = 3
(ii) y, when x = 0
Fro graph we find that y = -5, when x = 0.
APPEARS IN
RELATED QUESTIONS
The following distribution gives the daily income of 50 workers of a factory.
Daily income (in ₹) | 200-220 | 220-240 | 240-260 | 260-280 | 280-300 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Convert the distribution above to a 'less than type' cumulative frequency distribution and draw its ogive.
Draw the graph for the linear equation given below:
y = 0
Draw the graph for the linear equation given below:
y = - 2x
Draw the graph for the linear equation given below:
y = `4x - (5)/(2)`
Draw the graph for the linear equation given below:
`(x - 1)/(3) - (y + 2)/(2) = 0`
Draw the graph for the linear equation given below:
x + 5y + 2 = 0
For the pair of linear equations given below, draw graphs and then state, whether the lines drawn are parallel or perpendicular to each other.
y = x - 3
y = - x + 5
Draw a graph for each of the following equations and find the coordinates of the points where the line drawn meets the x-axis and y-axis: `(2x)/(5) + y/(2)` = 1
Draw a graph of the equation 2x + 3y + 5 = 0, from the graph find the value of:
(i) x, when y = -3
(ii) y, when x = 8
Draw the graph of the lines represented by the equations 2x - y = 8 and 4x + 3y = 6 on the same graph. Find the co-ordinates of the point where they intersect.