Advertisements
Advertisements
Question
Draw an obtuse angled Δ STV. Draw its medians and show the centroid.
Solution
Steps of construction:
- Draw an obtuse, angled ∆ STV.
- Draw the perpendicular bisector AB of side TV that intersects side TV at L. L is the mid point of TV.
- Join SL, where SL is median to the side TV.
In the same manner, obtain the mid points M and N of sides SV and ST, respectively. - Join TM and VN.
Hence, ∆ STV is the required triangle in which the medians SL, TM and VN to the sides TV, SV and ST respectively intersect at point G.
The point G is the centroid of ∆ STV.
RELATED QUESTIONS
Draw an obtuse angled Δ LMN. Draw its altitudes and denote the orthocentre by ‘O’.
Draw an isosceles triangle. Draw all of its medians and altitudes. Write your observation about their points of concurrence.
The medians of a triangle cross each other at _______
The centroid of a triangle divides each medians in the ratio _______
The centroid, orthocentre, and incentre of a triangle are collinear
In the given figure, A is the midpoint of YZ and G is the centroid of the triangle XYZ. If the length of GA is 3 cm, find XA
In ∆DEF, DN, EO, FM are medians and point P is the centroid. Find the following
If DE = 44, then DM = ?
In ∆DEF, DN, EO, FM are medians and point P is the centroid. Find the following
If PD = 12, then PN = ?
In ∆DEF, DN, EO, FM are medians and point P is the centroid. Find the following
If DO = 8, then FD = ?
In ∆DEF, DN, EO, FM are medians and point P is the centroid. Find the following
If OE = 36 then EP = ?