English

दर्शाइए कि दो शून्येतर सदिशों a→ और b→ के लिए |a→|b→+|b→|a→,|a→|b→-|b→|a→ पर लंब है। - Mathematics (गणित)

Advertisements
Advertisements

Question

दर्शाइए कि दो शून्येतर सदिशों `veca` और `vecb` के लिए `|veca| vecb + |vecb| veca, |veca| vecb - |vecb| veca` पर लंब है।

Sum

Solution

दिया है, `|veca| vecb + |vecb| veca, |veca| vecb - |vecb| veca` पर लंब है।

यदि `[|veca| vecb + |vecb| veca] xx [|veca| vecb - |vecb| veca] = 0`

= `|veca| vecb xx |veca| vecb - |veca| vecb| vecb| veca + |vecb| veca| vecb| xx veca - |vecb|^2 veca xx veca`

= `|veca|^2vecb xx vecb - veca||vecb|veca xx vecb + |vecb||veca||veca xx vecb - |vecb|^2|veca|^2`

= `|veca|^2 |vecb|^2  - |veca|^2 |vecb|^2`

= 0

अतः दिए गए सदिश एक दूसरे पर लंब है।

इति सिद्धम।

shaalaa.com
दो सदिशों का गुणनफल - दो सदिशों का अदिश गुणनफल
  Is there an error in this question or solution?
Chapter 10: सदिश बीजगणित - प्रश्नावली 10.3 [Page 463]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 10 सदिश बीजगणित
प्रश्नावली 10.3 | Q 11. | Page 463

RELATED QUESTIONS

दो सदिशों `veca` तथा `vecb` के परिमाण क्रमशः `sqrt3` एवं 2 हैं और `veca . vecb = sqrt6` है तो `veca` तथा `vecb` के बीच का कोण ज्ञात कीजिए।


यदि `(veca + vecb).(veca - vecb) = 8` और `|veca| = 8|vecb|` हो तो `|veca|` एवं `|vecb|` ज्ञात कीजिए।


`(3veca - 5vecb) . (2veca + 7vecb)` का मान ज्ञात कीजिए।


दो सदिशों `veca` और `vecb` के परिमाण ज्ञात कीजिए, यदि इनके परिमाण समान है और इन के बीच का कोण 60° है तथा इनका अदिश गुणनफल `1/2` है।


यदि `veca, vecb, vecc` मात्रक सदिश इस प्रकार है कि `veca + vecb + vecc = vec0` तो `veca . vecb + vecb . vecc + vecc . veca` का मान ज्ञात कीजिए।


यदि शून्येतर सदिश `veca` का परिणाम 'a' है और λ एक शून्येतर अदिश है तो `λveca` एक मात्रक सदिश है यदि ______.


XY-तल में, x-अक्ष की धनात्मक दिशा के साथ वामावर्त दिशा में 30° का कोण बनाने वाला मात्रक सदिश लिखिए।


मान लीजिए सदिश `veca, vecb, vecc` क्रमश: `a_1 hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` के रूप में दिए हुए हैं तब दर्शाइए की `veca xx (vecb + vecc) = veca xx vecb + veca xx vecc`


बिंदु P(x1, y1, z1) और Q(x2, y2, z2) को मिलाने वाले सदिश के अदिश घटक और परिमाण ज्ञात कीजिए।


मान लीजिए `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk` और `vecc = 2hati - hatj + 4hatk`, एक ऐसा सदिश `vecd` ज्ञात कीजिए जो `veca` और `vecb` दोनों पर लांब है और `vecc.vecd = 15`.


सदिश `hati + hatj + hatk` का, सदिशों `2hati + 4hatj - 5hatk` और `lambdahati + 2hatj + 3hatk` के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल 1 के बराबर है तो λ का मान ज्ञात कीजिए।


सदिश `hati + hatj + hatk` का, सदिशों `2hati + 4hatj - 5hatk` और `lambdahati + 2hatj + 3hatk` के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल 1 के बराबर है तो λ का मान ज्ञात कीजिए |


यदि दो सदिशों `veca` और `vecb` के बीच का कोण θ है तो `|veca . vecb| = |veca xx vecb|` जब θ बराबर है:


`hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.(hati xx hatj)` का मान है।


मान लीजिए `veca` और `vecb` दो मात्रक सदिश हैं और उनके बीच का कोण θ है तो `veca + vecb` एक मात्रक सदिश है यदि ______.


यदि दो सदिशों `veca` और `vecb` के बीच का कोण θ है तो `veca.vecb ≥ 0` होगा यदि ______:


यदि `veca, vecb, vecc` समान परिमाणों वाले परस्पर लंबवत् सदिश हैं तो दर्शाइए कि सदिश `veca + vecb + vecc` सदिशों `veca, vecb` तथा `vecc` के साथ बराबर झुका हुआ है।


सिद्ध कीजिए कि `(veca + vecb) . (veca + vecb) = |veca|^2 + |vecb|^2`, यदि और केवल यदि `veca,vecb` लंबवत् हैं। यह दिया हुआ है कि `veca ≠ vec0, vecb ≠ vec0.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×