Advertisements
Advertisements
Question
मान लीजिए सदिश `veca, vecb, vecc` क्रमश: `a_1 hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` के रूप में दिए हुए हैं तब दर्शाइए की `veca xx (vecb + vecc) = veca xx vecb + veca xx vecc`
Solution
दिया है, `a_1 hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk`
सिद्ध करना है, `veca xx (vecb + vecc) = veca xx vecb + veca xx vecc`
`veca = a_1hati + a_2hatj + a_3hatk`
`vecb = b_1hati + b_2hatj + b_3hatk`
`vecc = c_1hati + c_2hatj + c_3hatk`
`(vecb + vecc) = (b_1 + c_1)hati + (b_2 + c_2)hatj + (b_3 + c_3)hatk`
`veca xx (vecb + vecc) = |(hati, hatj, hatk),(a_1, a_2, a_3), (b_1 + c_1, b_2 + c_2, b_3 + c_3)|`
`= hati [a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2] + hatj [- a_1b_3 - a_1c_3 + a_3b_1 + a_3c_1] + hatk [a_1b_2 + a_1c_2 - a_2b_1 - a_2c_1]` .....(i)
`veca xx vecb = |(hati, hatj, hatk), (a_1, a_2, a_3), (b_1, b_2, b_3)|`
`= hati [a_2b_3 - a_3b_2] + hatj [a_1b_3 - a_3b_1] + hatk [a_1b_2 - a_2b_1]` ....(ii)
`veca xx vecc = |(hati, hatj, hatk), (a_1, a_2, a_3), (c_1, c_2, c_3)|`
`= hati [a_2c_3 - a_3c_2] + hatj [a_3c_1 - a_1 c] + hatk [a_1c_2 - a_2c_1]` ....(iii)
(ii) और (iii) जोड़ने पर,
`hati [a_2c_3 - a_3c_2 + a_2b_3 - a_3b_2] + hatj [a_3c_1 - a_1c + a_1b_3 - a_3b_1] + hatk [a_1c_2 - a_2c_1 + a_1b_2 - a_2b_1]` ...(iv)
(i) और (iv) से,
`veca xx (vecb + vecc) = veca xx vecb + veca xx vecc`
APPEARS IN
RELATED QUESTIONS
दो सदिशों `veca` तथा `vecb` के परिमाण क्रमशः `sqrt3` एवं 2 हैं और `veca . vecb = sqrt6` है तो `veca` तथा `vecb` के बीच का कोण ज्ञात कीजिए।
यदि `(veca + vecb).(veca - vecb) = 8` और `|veca| = 8|vecb|` हो तो `|veca|` एवं `|vecb|` ज्ञात कीजिए।
दो सदिशों `veca` और `vecb` के परिमाण ज्ञात कीजिए, यदि इनके परिमाण समान है और इन के बीच का कोण 60° है तथा इनका अदिश गुणनफल `1/2` है।
यदि `veca = 2hati + 2hatj + 3hatk, vecb = -hati +2hatj + hatk` और `vecc = 3hati + hatj` इस प्रकार है कि `veca + λvecb, vecc` पर लंब है, तो λ का मान ज्ञात कीजिए।
दर्शाइए कि दो शून्येतर सदिशों `veca` और `vecb` के लिए `|veca| vecb + |vecb| veca, |veca| vecb - |vecb| veca` पर लंब है।
यदि किसी त्रिभुज ABC के शीर्ष A, B, C क्रमशः (1, 2, 3), (-1, 0, 0), (0, 1, 2) हैं तो ∠ABC ज्ञात कीजिए | [∠ABC, सदिशों `vec(BA)` एवं `vec(BC)` के बीच का कोण है]
यदि शून्येतर सदिश `veca` का परिणाम 'a' है और λ एक शून्येतर अदिश है तो `λveca` एक मात्रक सदिश है यदि ______.
बिंदु P(x1, y1, z1) और Q(x2, y2, z2) को मिलाने वाले सदिश के अदिश घटक और परिमाण ज्ञात कीजिए।
मान लीजिए `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk` और `vecc = 2hati - hatj + 4hatk`, एक ऐसा सदिश `vecd` ज्ञात कीजिए जो `veca` और `vecb` दोनों पर लांब है और `vecc.vecd = 15`.
सदिश `hati + hatj + hatk` का, सदिशों `2hati + 4hatj - 5hatk` और `lambdahati + 2hatj + 3hatk` के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल 1 के बराबर है तो λ का मान ज्ञात कीजिए।
सदिश `hati + hatj + hatk` का, सदिशों `2hati + 4hatj - 5hatk` और `lambdahati + 2hatj + 3hatk` के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल 1 के बराबर है तो λ का मान ज्ञात कीजिए |
यदि दो सदिशों `veca` और `vecb` के बीच का कोण θ है तो `|veca . vecb| = |veca xx vecb|` जब θ बराबर है:
`hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.(hati xx hatj)` का मान है।
यदि दो सदिशों `veca` और `vecb` के बीच का कोण θ है तो `veca.vecb ≥ 0` होगा यदि ______:
यदि `veca, vecb, vecc` समान परिमाणों वाले परस्पर लंबवत् सदिश हैं तो दर्शाइए कि सदिश `veca + vecb + vecc` सदिशों `veca, vecb` तथा `vecc` के साथ बराबर झुका हुआ है।
सिद्ध कीजिए कि `(veca + vecb) . (veca + vecb) = |veca|^2 + |vecb|^2`, यदि और केवल यदि `veca,vecb` लंबवत् हैं। यह दिया हुआ है कि `veca ≠ vec0, vecb ≠ vec0.`