Advertisements
Advertisements
Question
यदि `veca = vec0` अथवा `vecb = vec0` तब `veca xx vecb = vec0` होता है। क्या विलोम सत्य है? उदाहरण सहित अपने उत्तर की पुष्टि कीजिए।
Solution
जब `veca = vec0,` तब `|veca| = 0.`
मान लीजिए 'θ' `veca "और" vecb` के बीच का कोण है।
∴ `veca xx vecb = |veca| |vecb| sin theta = vec0`
`= (0) |vecb| sin theta = vec0`
इसी प्रकार, जब `vecb = vec0, "तब" veca xx vecb = vec0`
मान लीजिए, `veca = a_1 hati + a_2 hatj + a_3hatk`
और `vecb = lambda a_1 hati + lambda a_2 hatj + lambda a_3 hatk `
स्पष्ट रूप से `vec a, vecb` समानांतर हैं।
⇒ θ = 0
जब `|veca| ne 0` और `|vecb| ne 0`
परंतु `veca xx vecb = vec0` भले ही sin θ = 0
इसलिए, `veca xx vecb = vec0` यहां तक कि `veca ne vec0` और `vecb ne vec0`
मान लीजिए, `veca = 2 hati - hatj + hatk` तथा `hatb = 4hati - 2hatj + 2hatk`
∴ `veca xx vecb = abs((hati,hatj, hatk), (2, -1, 1), (4, -2, 2)) = 0`
⇒ `veca xx vecb = 0`
लेकिन `veca ne vec0` और `vecb ne 0`
APPEARS IN
RELATED QUESTIONS
सदिश `hati + hatj` पर सदिश `hati - hatj` का प्रक्षेप ज्ञात कीजिए।
दर्शाइए कि दिए हुए निम्नलिखित तीन सदिशों में से प्रत्येक मात्रक सदिश है,
`1/7(2hati + 3hatj + 6hatk), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`
यह भी दर्शाइए कि ये सदिश परस्पर एक दूसरे के लंबवत् हैं।
यदि एक मात्रक सदिश `veca`, के लिए `(vecx - veca) * (vecx + veca) = 12` हो तो `|vecx|` ज्ञात कीजिए।
यदि `veca = hati - 7hatj + 7hatk` और `vecb = 3hati - 2hatj + 2hatk` तो `|veca xx vecb|` ज्ञात कीजिए।
यदि एक मात्रक सदिश `veca, hati` के साथ `pi/3, hatj` के साथ `pi/4` और `hatk` के साथ एक न्यून कोण θ बनाता है तो θ का मान ज्ञात कीजिए और इसकी सहायता से `veca` के घटक भी ज्ञात कीजिए।
दर्शाइए कि `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`
λ और μ ज्ञात कीजिए, यदि `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`
दिया हुआ है की `veca.vecb = 0` और `veca xx vecb = vec0.` सदिश `veca` और `vecb` के बारे में आप क्या निष्कर्ष निकाल सकते हैं?
एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष A(1, 1, 2), B(2, 3, 5) और C(1, 5, 5) हैं।
एक समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसकी संलग्न भुजाएँ सदिश `veca = hati - hatj + 3hatk` और `vecb = 2hati - 7hatj + hatk` द्वारा निर्धारित हैं।
मान लीजिए सदिश `veca` और `vecb` इस प्रकार हैं की `|veca| = 3` और `|vecb| = sqrt2/3`, तब `veca xx vecb` एक मात्रक सदिश है यदि `veca` और `vecb` के बीच का कोण है:
एक आयत के शीर्षों A, B, C और D जिनके स्थिति सदिश क्रमश: `-hati + 1/2hatj + 4hatk, hati + 1/2hatj + 4hatk, hati - 1/2hatj + 4hatk` और `-hati - 1/2hatj + 4hatk,` हैं का क्षेत्रफल है:
सदिश `vec a + vec b` और `veca - vecb` की लंब दिशा में मात्रक सदिश ज्ञात कीजिए जहाँ `veca = 3hati + 2hatj + 2hatk` और `vecb = hati + 2hatj - 2hatk` है।