English

मान लीजिए सदिश a→ और b→ इस प्रकार हैं की |a→|=3 और |b→|=23, तब a→×b→ एक मात्रक सदिश है यदि a→ और b→ के बीच का कोण है: π6 π4 π3 π2 - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए सदिश  `veca` और `vecb`  इस प्रकार हैं की `|veca| = 3` और `|vecb| = sqrt2/3`, तब `veca xx vecb` एक मात्रक सदिश है यदि `veca` और `vecb` के बीच का कोण है:

Options

  • `pi/6`

  • `pi/4`

  • `pi/3`

  • `pi/2`

MCQ
Sum

Solution

`pi/4`

स्पष्टीकरण:

`|veca| = 3, |vecb| = sqrt2/3`

`|veca xx vecb| = 1`

`|veca||vecb||sinthetahatn| = 1`

`|veca||vecb||sintheta| = 1`

`3 xx sqrt2/2 xx sintheta = 1`

`sintheta = 1/sqrt2`

`theta = pi/4`

सही विकल्प `pi/4` है।

shaalaa.com
दो सदिशों का गुणनफल - दो सदिशों का सदिश गुणनफल
  Is there an error in this question or solution?
Chapter 10: सदिश बीजगणित - प्रश्नावली 10.4 [Page 469]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 10 सदिश बीजगणित
प्रश्नावली 10.4 | Q 11. | Page 469

RELATED QUESTIONS

सदिश `hati + hatj` पर सदिश `hati - hatj` का प्रक्षेप ज्ञात कीजिए।


दर्शाइए कि दिए हुए निम्नलिखित तीन सदिशों में से प्रत्येक मात्रक सदिश है,

`1/7(2hati + 3hatj + 6hatk), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`

यह भी दर्शाइए कि ये सदिश परस्पर एक दूसरे के लंबवत्‌ हैं।


यदि एक मात्रक सदिश `veca`, के लिए `(vecx - veca) * (vecx + veca) = 12` हो तो `|vecx|` ज्ञात कीजिए। 


यदि `veca = hati - 7hatj + 7hatk` और `vecb = 3hati - 2hatj + 2hatk` तो `|veca xx vecb|` ज्ञात कीजिए।


यदि एक मात्रक सदिश `veca, hati` के साथ `pi/3, hatj` के साथ `pi/4` और `hatk` के साथ एक न्यून कोण θ बनाता है तो θ का मान ज्ञात कीजिए और इसकी सहायता से `veca` के घटक भी ज्ञात कीजिए।


दर्शाइए कि `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`


λ और μ ज्ञात कीजिए, यदि `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`


दिया हुआ है की `veca.vecb = 0` और `veca xx vecb = vec0.` सदिश `veca` और `vecb` के बारे में आप क्या निष्कर्ष निकाल सकते हैं?


यदि `veca = vec0` अथवा `vecb = vec0` तब `veca xx vecb = vec0` होता है। क्या विलोम सत्य है? उदाहरण सहित अपने उत्तर की पुष्टि कीजिए।


एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष A(1, 1, 2), B(2, 3, 5) और C(1, 5, 5) हैं।


एक समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसकी संलग्न भुजाएँ सदिश `veca = hati - hatj + 3hatk` और `vecb = 2hati - 7hatj + hatk` द्वारा निर्धारित हैं।


एक आयत के शीर्षों A, B, C और D जिनके स्थिति सदिश क्रमश: `-hati + 1/2hatj + 4hatk, hati + 1/2hatj + 4hatk, hati - 1/2hatj + 4hatk` और `-hati - 1/2hatj + 4hatk,`  हैं का क्षेत्रफल है:


सदिश `vec a + vec b` और `veca - vecb` की लंब दिशा में मात्रक सदिश ज्ञात कीजिए जहाँ `veca = 3hati + 2hatj + 2hatk` और `vecb = hati + 2hatj - 2hatk` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×