Advertisements
Advertisements
Question
एक समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसकी संलग्न भुजाएँ सदिश `veca = hati - hatj + 3hatk` और `vecb = 2hati - 7hatj + hatk` द्वारा निर्धारित हैं।
Solution
`veca = hati - hatj + 3hatk, vecb = 2hati - 7hatj + hatk`
यहाँ, `veca xx vecb = |(hati, hatj, hatk), (2, 3, 4), (4, 6, 8)|`
= `hati(-1 + 21) - hatj(1 - 6) + hatk(-7 + 2)`
= `20hati + 5hatj - 5hatk`
∴ समान्तर चतुर्भुज का क्षेत्रफल = `veca xx vecb`
= `|veca xx vecb| = sqrt((20)^2 + 5^2 + 5^2)`
`= sqrt450`
`= 15sqrt2` वर्ग इकाई
APPEARS IN
RELATED QUESTIONS
सदिश `hati + hatj` पर सदिश `hati - hatj` का प्रक्षेप ज्ञात कीजिए।
दर्शाइए कि दिए हुए निम्नलिखित तीन सदिशों में से प्रत्येक मात्रक सदिश है,
`1/7(2hati + 3hatj + 6hatk), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`
यह भी दर्शाइए कि ये सदिश परस्पर एक दूसरे के लंबवत् हैं।
यदि एक मात्रक सदिश `veca`, के लिए `(vecx - veca) * (vecx + veca) = 12` हो तो `|vecx|` ज्ञात कीजिए।
यदि `veca = hati - 7hatj + 7hatk` और `vecb = 3hati - 2hatj + 2hatk` तो `|veca xx vecb|` ज्ञात कीजिए।
यदि एक मात्रक सदिश `veca, hati` के साथ `pi/3, hatj` के साथ `pi/4` और `hatk` के साथ एक न्यून कोण θ बनाता है तो θ का मान ज्ञात कीजिए और इसकी सहायता से `veca` के घटक भी ज्ञात कीजिए।
दर्शाइए कि `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`
λ और μ ज्ञात कीजिए, यदि `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`
दिया हुआ है की `veca.vecb = 0` और `veca xx vecb = vec0.` सदिश `veca` और `vecb` के बारे में आप क्या निष्कर्ष निकाल सकते हैं?
यदि `veca = vec0` अथवा `vecb = vec0` तब `veca xx vecb = vec0` होता है। क्या विलोम सत्य है? उदाहरण सहित अपने उत्तर की पुष्टि कीजिए।
एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष A(1, 1, 2), B(2, 3, 5) और C(1, 5, 5) हैं।
एक आयत के शीर्षों A, B, C और D जिनके स्थिति सदिश क्रमश: `-hati + 1/2hatj + 4hatk, hati + 1/2hatj + 4hatk, hati - 1/2hatj + 4hatk` और `-hati - 1/2hatj + 4hatk,` हैं का क्षेत्रफल है:
सदिश `vec a + vec b` और `veca - vecb` की लंब दिशा में मात्रक सदिश ज्ञात कीजिए जहाँ `veca = 3hati + 2hatj + 2hatk` और `vecb = hati + 2hatj - 2hatk` है।