हिंदी

एक समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसकी संलग्न भुजाएँ सदिश a→=i^-j^+3k^ और b→=2i^-7j^+k^ द्वारा निर्धारित हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसकी संलग्न भुजाएँ सदिश `veca = hati - hatj + 3hatk` और `vecb = 2hati - 7hatj + hatk` द्वारा निर्धारित हैं।

योग

उत्तर

`veca = hati - hatj + 3hatk, vecb = 2hati - 7hatj + hatk`

यहाँ, `veca xx vecb = |(hati, hatj, hatk), (2, 3, 4), (4, 6, 8)|`

= `hati(-1 + 21) - hatj(1 - 6) + hatk(-7 + 2)`

= `20hati + 5hatj - 5hatk`

∴ समान्तर चतुर्भुज का क्षेत्रफल = `veca xx vecb`

= `|veca xx vecb| = sqrt((20)^2 + 5^2 + 5^2)`

`= sqrt450`

`= 15sqrt2` वर्ग इकाई

shaalaa.com
दो सदिशों का गुणनफल - दो सदिशों का सदिश गुणनफल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सदिश बीजगणित - प्रश्नावली 10.4 [पृष्ठ ४६९]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 10 सदिश बीजगणित
प्रश्नावली 10.4 | Q 10. | पृष्ठ ४६९

संबंधित प्रश्न

सदिश `hati + hatj` पर सदिश `hati - hatj` का प्रक्षेप ज्ञात कीजिए।


दर्शाइए कि दिए हुए निम्नलिखित तीन सदिशों में से प्रत्येक मात्रक सदिश है,

`1/7(2hati + 3hatj + 6hatk), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`

यह भी दर्शाइए कि ये सदिश परस्पर एक दूसरे के लंबवत्‌ हैं।


यदि एक मात्रक सदिश `veca`, के लिए `(vecx - veca) * (vecx + veca) = 12` हो तो `|vecx|` ज्ञात कीजिए। 


यदि `veca = hati - 7hatj + 7hatk` और `vecb = 3hati - 2hatj + 2hatk` तो `|veca xx vecb|` ज्ञात कीजिए।


यदि एक मात्रक सदिश `veca, hati` के साथ `pi/3, hatj` के साथ `pi/4` और `hatk` के साथ एक न्यून कोण θ बनाता है तो θ का मान ज्ञात कीजिए और इसकी सहायता से `veca` के घटक भी ज्ञात कीजिए।


दर्शाइए कि `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`


λ और μ ज्ञात कीजिए, यदि `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`


दिया हुआ है की `veca.vecb = 0` और `veca xx vecb = vec0.` सदिश `veca` और `vecb` के बारे में आप क्या निष्कर्ष निकाल सकते हैं?


यदि `veca = vec0` अथवा `vecb = vec0` तब `veca xx vecb = vec0` होता है। क्या विलोम सत्य है? उदाहरण सहित अपने उत्तर की पुष्टि कीजिए।


एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष A(1, 1, 2), B(2, 3, 5) और C(1, 5, 5) हैं।


मान लीजिए सदिश  `veca` और `vecb`  इस प्रकार हैं की `|veca| = 3` और `|vecb| = sqrt2/3`, तब `veca xx vecb` एक मात्रक सदिश है यदि `veca` और `vecb` के बीच का कोण है:


एक आयत के शीर्षों A, B, C और D जिनके स्थिति सदिश क्रमश: `-hati + 1/2hatj + 4hatk, hati + 1/2hatj + 4hatk, hati - 1/2hatj + 4hatk` और `-hati - 1/2hatj + 4hatk,`  हैं का क्षेत्रफल है:


सदिश `vec a + vec b` और `veca - vecb` की लंब दिशा में मात्रक सदिश ज्ञात कीजिए जहाँ `veca = 3hati + 2hatj + 2hatk` और `vecb = hati + 2hatj - 2hatk` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×