English

दवा का एक कैप्सूल एक बेलन के आकार का है जिसके दोनों सिरों पर एक - एक अर्धगोला लगा हुआ है। पूरे कैप्सूल की लंबाई 14 मिमी है और उसका व्यास 5 मिमी है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

दवा का एक कैप्सूल एक बेलन के आकार का है जिसके दोनों सिरों पर एक - एक अर्धगोला लगा हुआ है। पूरे कैप्सूल की लंबाई 14 मिमी है और उसका व्यास 5 मिमी है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।   [उपयोग `pi = 22/7`]

Sum

Solution

यह देखा जा सकता है कि,

बेलनाकार भाग की त्रिज्या (r) = अर्धगोलाकार भाग की त्रिज्या (r)

=`"कैप्सूल का व्यास"/2`

= `5/2`

= 2.5 मिमी

बेलनाकार भाग की लंबाई (h) = पूरे कैप्सूल की लंबाई − 2 × r

= 14 − 2 × 2.5

= 9 मिमी

कैप्सूल का पृष्ठीय क्षेत्रफल = 2 × गोलार्ध भाग का CSA + बेलनाकार भाग का CSA

= 2 × 2πr2 + 2πrh

`= 4pi(5/2)^2+2pi(5/2)(9)`

= 25π + 45π

= 70π मिमी2

= `70  xx  22/7`

= 220 मिमी2

shaalaa.com
ठोसों के संयोजन का पृष्ठीय क्षेत्रफल
  Is there an error in this question or solution?
Chapter 13: पृष्ठीय क्षेत्रफल और आयतन - प्रश्नावली 13.1 [Page 268]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 13 पृष्ठीय क्षेत्रफल और आयतन
प्रश्नावली 13.1 | Q 6. | Page 268

RELATED QUESTIONS

कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमश: 2.1 मी और 4 मी है तथा शंकु की तिर्यक ऊँचाई 2.8 मी है तो इस तंबू को बनाने में प्रयुक्त कैनवस का क्षेत्रफल ज्ञात कीजिए। साथ ही, 500 रु प्रति वर्ग मी2 की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए। (ध्यान दें कि तम्बू का आधार कैनवास से ढका नहीं होगा।)

[उपयोग π = `22/7`]


ऊँचाई 2.4 सेमी और व्यास 1.4 सेमी वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल काट लिया जाता है। शेष बचे ठोस का निकटम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।  

[उपयोग π = `22/7`]


एक साहुल निम्नलिखित का संयोजन है:


गिल्ली-डंडे के खेल में, गिल्ली का आकार निम्नलिखित का संयोजन है-


तिर्यक ऊँचाई 45 cm वाली एक बाल्टी के ऊपरी और निचले सिरों की त्रिज्याएँ क्रमशः 28 cm और 7 cm हैं। इस बाल्टी का वक्र पृष्ठीय क्षेत्रफल ______ है।


एक ही आधार त्रिज्या r वाले दो ठोस अर्धगोलों को उनके आधारों के अनुदिश जोड़ दिया गया है। तब नये ठोस का वक्र पृष्ठीय क्षेत्रफल ______ है।


दो गोलों के आयतनों का अनुपात 64 : 27 है। उनके पृष्ठीय क्षेत्रफलों का अनुपात ______ है।


समान आधार त्रिज्या r वाले दो सर्वसम ठोस अर्धगोलों को उनके आधारों के अनुदिश जोड़ दिया गया है। इस संयोजन का कुल पृष्ठीय क्षेत्रफल 6πr2 है।


एक बेलनाकार बर्तन, जिसकी तली में अर्धगोलाकार भाग आकृति में दर्शाए अनुसार ऊपर की ओर उठा हुआ है, की धारिता `(πr^2)/3[3h - 2r]` है।


समान आधार त्रिज्या 8 cm और समान ऊँचाई 15 cm वाले दो शंकुओं को उनके आधारों के अनुदिश जोड़ा जाता है। इस प्रकार बने आकार का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×