Advertisements
Advertisements
Question
एक 5 m लंबी सीढी दीवार के सहारे झुकी है। सीढ़ी का नीचे का सिरा, जमीन के अनुदिश, दीवार से दूर 2 cm/s की दर से खींचा जाता है। दीवार पर इसकी ऊँचाई किस दर से घट रही है जबकि सीढ़ी को नीचे का सिरा दीवार से 4 m दूर है?
Solution 1
OA = x और OB = y
सीढ़ी की लंबाई AB = 5 मी
प्रश्नानुसार, `dx/dt = 2` मी /से
समकोण `Delta` AOB से,
x2 + y2 = 25 `=> 2x * dx/dt + 2y * dy/dt = 0`
`=> 2x * 2 + 2y * dy/dt = 0 (because dx/dt= 2)`
`=> dy/dt = (-2x)/y` मी /से ....(i)
अत: x = 4 पर, `y = sqrt (5^2 - 4^2) = 3`
समीकरण (i) में x = 4 तथा y = 3 रखने पर,
`dy/dt = (- 8)/3` मी /से
अत: दीवार पर सीढ़ी की ऊँचाई `-8/3` मी/से की दर से घट रही है।
Solution 2
यदि सीढ़ी का पैर दीवार से x दूरी पर है और शीर्ष ti,e t के किसी भी क्षण पर y ऊंचाई पर है, तो
(5 m)2 = x2 + y2 ....(i)
(i) को t के संबंध में अवकलित करने पर, हमें प्राप्त होता है
`= d/dt (25 m^2) = 2x dx/dt + 2y dy/dt` ....(ii)
हमारे पास है `dx/dt = 0.02 m //sec`
x = 4 m और y = `sqrt(25-4^2) m = 3`
`(∵ x^2 + y^2 = 25 m^2, y = sqrt (25 = x^2)) m`
इसलिए (ii) से, हमें मिलता है,
`0 = 2 xx 4 m xx 0.02 m// sec + 2 xx 3 dy/dt`
`= dy/dt = -0.16/6` m/sec
∴ दीवार पर ऊंचाई में कमी की दर
`= 16/600 m// sec = 1600/600 cm//sec = 8/3 cm//sec.`
APPEARS IN
RELATED QUESTIONS
वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या r के सापेक्ष ज्ञात कीजिए, जबकि r = 4 सेमी है।
एक घन का आयतन 8 cm3/s की दर से बढ़ रहा है। पृष्ठ का क्षेत्रफल किस दर से बढ़ रहा है जब कि इसके किनारे की लंबाई 12 cm हैं।
एक वृत्त की त्रिज्या समान रूप से 3 cm/s की दर से बढ़ रही है। ज्ञात कीजिए की वृत्त का क्षेत्रफल किस दर से बढ़ रहा है जब त्रिज्या 10 cm है।
एक परिवर्तनशील घन का किनारा 3 cm/s की दर से बढ़ रहा है। घन का आयतन किस दर से बढ़ रहा है जबकि किनारा 10 cm लंबा है?
एक स्थिर झील में एक पत्थर डाला जाता है और तरंगें वृत्तों में 5 cm/s की गति से चलती है। जब वृत्ताकार तरंग की त्रिज्या 8 cm है तो उस क्षण, घिरा हुआ क्षेत्रफल किस दर से बढ़ रहा है।
एक गुब्बारा जो सदैव गोलाकार रहता है कि त्रिज्या परिवर्तनशील है। त्रिज्या के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 10 cm है।
एक कण वक्र 6y = x3 + 2 के अनुगत गति कर रहा है। वक्र पर उन बिंदुओं को ज्ञात कीजिए जबकि x निर्देशांक की तुलना में y निर्देशांक 8 गुना तीव्रता से बदल रहा है।
हवा के बुलबुले की त्रिज्या, `1/2` cm/s दर से बढ़ रही है। बुलबुले का आयतन किस दर से बढ़ रहा है जबकि त्रिज्या 1 cm है?
एक गुब्बारा, जो सदैव गोलाकार रहता है, का परिवर्तनशील व्यास `3/2` (2x + 1) है। x के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए।
एक पाइप से रेत 12 cm3/s की दर से गिर रही है। गिरती रेत जमीन पर एक ऐसा शंकु बनाती है जिसकी ऊँचाई सदैव आधार की त्रिज्या का छठा भाग है। रेत से बने शंकु की ऊँचाई किस दर से बढ़ रही है जबकि ऊँचाई 4 cm है?
एक वस्तु की x इकाइयों के उत्पादन की कुल लागत C (x) (रुपये में) C(x) = 0.007x3 – 0.003x2 + 15x + 4000 से प्राप्त होती है। सीमांत लागत ज्ञात कीजिए जबकि 17 इकाइयों का उत्पादन किया गया है।
किसी उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय R(x) रुपयों में R(x) = 13x2 + 26x + 15 से प्रदत्त है। सीमांत आय ज्ञात कीजिए जब x = 7 है।
एक वृत्त की त्रिज्या r = 6 सेमी पर r के सापेक्ष क्षेत्रफल में परिवर्तन की दर है:
एक उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय रुपयों में R(x) = 3x2 + 36x + 5 से प्रदत्त है। जब x = 15 है तो सीमांते आये है:
किसी निश्चित आधार b के एक समद्विबाहु त्रिभुज की समान भुजाएँ 3 cm/s की दर से घट रही हैं। उस समय जब त्रिभुज की समान भुजाएँ आधार के बराबर हैं, उसका क्षेत्रफल कितनी तेजी से घट रहा है?
वक्र x2 = 4y के बिन्दु (1, 2) पर अभिलम्ब का समीकरण ज्ञात कीजिए।
एक आयत की लंबाई x, 5 cm/min की दर से घट रही है और चौड़ाई y, 4 cm/min की दर से बढ़ रही है। जब x = 8 cm और y = 6 cm है। तब आयत के क्षेत्रफल के दर ज्ञात कीजिए।