English

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग [Latest edition]

Advertisements

Chapters

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग - Shaalaa.com
Advertisements

Solutions for Chapter 6: अवकलज के अनुप्रयोग

Below listed, you can find solutions for Chapter 6 of CBSE NCERT for Mathematics - Part 1 and 2 [Hindi] Class 12.


प्रश्नावली 6.1प्रश्नावली 6.2प्रश्नावली 6.3विविध प्रश्नावली
प्रश्नावली 6.1 [Pages 159 - 161]

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 6 अवकलज के अनुप्रयोग प्रश्नावली 6.1 [Pages 159 - 161]

प्रश्नावली 6.1 | Q 1. (a) | Page 159

वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या के सापेक्ष ज्ञात कीजिए जबकि r = 3 cm है।

प्रश्नावली 6.1 | Q 1. (b) | Page 159

वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या r के सापेक्ष ज्ञात कीजिए, जबकि r = 4 सेमी है।

प्रश्नावली 6.1 | Q 2. | Page 160

एक घन का आयतन 8 cm3/s की दर से बढ़ रहा है। पृष्ठ का क्षेत्रफल किस दर से बढ़ रहा है जब कि इसके किनारे की  लंबाई 12 cm हैं।

प्रश्नावली 6.1 | Q 3. | Page 160

एक वृत्त की त्रिज्या समान रूप से 3 cm/s की दर से बढ़ रही है। ज्ञात कीजिए की वृत्त का क्षेत्रफल किस दर से बढ़ रहा है जब त्रिज्या 10 cm है।

प्रश्नावली 6.1 | Q 4. | Page 160

एक परिवर्तनशील घन का किनारा 3 cm/s की दर से बढ़ रहा है। घन का आयतन किस दर से बढ़ रहा है जबकि किनारा 10 cm लंबा है?

प्रश्नावली 6.1 | Q 5. | Page 160

एक स्थिर झील में एक पत्थर डाला जाता है और तरंगें वृत्तों में 5 cm/s की गति से चलती है। जब वृत्ताकार तरंग की त्रिज्या 8 cm है तो उस क्षण, घिरा हुआ क्षेत्रफल किस दर से बढ़ रहा है।

प्रश्नावली 6.1 | Q 6. | Page 160

एक वृत्त की त्रिज्या 0.7 cm/s की दर से बढ़ रही है। इसकी परिधि की वृद्धि की दर क्या है जब r = 4.9 cm है?

प्रश्नावली 6.1 | Q 7. (a) | Page 160

एक आयत की लंबाई x, 5 cm/min की दर से घट रही है और चौड़ाई y, 4 cm/min की दर से बढ़ रही है। जब x = 8 cm और y = 6 cm है। तब आयत के परिमाप के दर ज्ञात कीजिए।

प्रश्नावली 6.1 | Q 7. (b) | Page 160

एक आयत की लंबाई x, 5 cm/min की दर से घट रही है और चौड़ाई y, 4 cm/min की दर से बढ़ रही है। जब x = 8 cm और y = 6 cm है। तब आयत के क्षेत्रफल के दर ज्ञात कीजिए।

प्रश्नावली 6.1 | Q 8. | Page 160

एक गुब्बारा जो सदैव गोलाकर रहता है, एक पंप द्वारा 900 cm3  गैस प्रति सेकंड भर कर फुलाया जाता है। गुब्बारे की त्रिज्या के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 15 cm है।

प्रश्नावली 6.1 | Q 9. | Page 160

एक गुब्बारा जो सदैव गोलाकार रहता है कि त्रिज्या परिवर्तनशील है। त्रिज्या के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 10 cm है।

प्रश्नावली 6.1 | Q 10. | Page 160

एक 5 m लंबी सीढी दीवार के सहारे झुकी है। सीढ़ी का नीचे का सिरा, जमीन के अनुदिश, दीवार से दूर 2 cm/s की दर से खींचा जाता है। दीवार पर इसकी ऊँचाई किस दर से घट रही है जबकि सीढ़ी को नीचे का सिरा दीवार से 4 m दूर है?

प्रश्नावली 6.1 | Q 11. | Page 160

एक कण वक्र 6y = x3 + 2 के अनुगत गति कर रहा है। वक्र पर उन बिंदुओं को ज्ञात कीजिए जबकि x निर्देशांक की तुलना में y निर्देशांक 8 गुना तीव्रता से बदल रहा है।

प्रश्नावली 6.1 | Q 12. | Page 160

हवा के बुलबुले की त्रिज्या, `1/2` cm/s दर से बढ़ रही है। बुलबुले का आयतन किस दर से बढ़ रहा है जबकि त्रिज्या 1 cm है?

प्रश्नावली 6.1 | Q 13. | Page 160

एक गुब्बारा, जो सदैव गोलाकार रहता है, का परिवर्तनशील व्यास `3/2` (2x + 1) है। x के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए।

प्रश्नावली 6.1 | Q 14. | Page 160

एक पाइप से रेत 12 cm3/s की दर से गिर रही है। गिरती रेत जमीन पर एक ऐसा शंकु बनाती है जिसकी ऊँचाई सदैव आधार की त्रिज्या का छठा भाग है। रेत से बने शंकु की ऊँचाई किस दर से बढ़ रही है जबकि ऊँचाई 4 cm है?

प्रश्नावली 6.1 | Q 15. | Page 161

एक वस्तु की x इकाइयों के उत्पादन की कुल लागत C (x) (रुपये में) C(x) = 0.007x3 – 0.003x2 + 15x + 4000 से प्राप्त होती है। सीमांत लागत ज्ञात कीजिए जबकि 17 इकाइयों का उत्पादन किया गया है।

प्रश्नावली 6.1 | Q 16. | Page 161

किसी उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय R(x) रुपयों में R(x) = 13x2 + 26x + 15 से प्रदत्त है। सीमांत आय ज्ञात कीजिए जब x = 7 है।

प्रश्नावली 6.1 | Q 17. | Page 161

एक वृत्त की त्रिज्या r = 6 सेमी पर r के सापेक्ष क्षेत्रफल में परिवर्तन की दर है:

  • 10π

  • 12π

  • 11π

प्रश्नावली 6.1 | Q 18. | Page 161

एक उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय रुपयों में R(x) = 3x2 + 36x + 5 से प्रदत्त है। जब x = 15 है तो सीमांते आये है:

  • 116

  • 96

  • 90

  • 126

प्रश्नावली 6.2 [Pages 167 - 169]

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 6 अवकलज के अनुप्रयोग प्रश्नावली 6.2 [Pages 167 - 169]

प्रश्नावली 6.2 | Q 1. | Page 167

सिद्ध कीजिए कि R पर f(x) = 3x + 17 से प्रदत्त फलन वर्धमान है।

प्रश्नावली 6.2 | Q 2. | Page 167

सिद्ध कीजिए कि R पर f(x) = e2x से प्रदत्त फलन वर्धमान है।

प्रश्नावली 6.2 | Q 3. | Page 167

सिद्ध कीजिए कि f(x) = sin x द्वारा दिया गया फलन

  1. `(0, pi/2)` में निरंतर वर्धमान है।
  2. `(pi/2, pi)` में निरंतर ह्रासमान है।
  3. `(0, pi)` में न तो वर्धमान है और न ह्रासमान।
प्रश्नावली 6.2 | Q 4. | Page 168

अंतराल ज्ञात कीजिए जिनमें f(x) = 2x2 - 3x से प्रदत्त फलन f

  1. वर्धमान 
  2. ह्रासमान
प्रश्नावली 6.2 | Q 5. | Page 168

अंतराल ज्ञात कीजिए जिनमें f(x) = 2x3 - 3x2 - 36x + 7 से प्रदत्त फलन f

  1. वर्धमान
  2. ह्रासमान
प्रश्नावली 6.2 | Q 6. (a) | Page 168

अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:

f(x) = x2 + 2x + 5

प्रश्नावली 6.2 | Q 6. (b) | Page 168

अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:

f(x) = 10 - 6x - 2x2

प्रश्नावली 6.2 | Q 6. (c) | Page 168

अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:

f(x) = - 2x3 - 9x2 - 12x + 1

प्रश्नावली 6.2 | Q 6. (d) | Page 168

अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या ह्रासमान है:

f(x) = 6 - 9x - x2

प्रश्नावली 6.2 | Q 6. (e) | Page 168

अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:

f(x) = (x + 1)3 (x - 3)3

प्रश्नावली 6.2 | Q 7. | Page 168

सिद्ध कीजिए कि y = log (1 + x) - `(2"x")/(2 + "x"),` x > -1 अपने संपूर्ण प्रांत में में एक वर्धमान फलन है।

प्रश्नावली 6.2 | Q 8. | Page 168

x के उन मानों को ज्ञात कीजिए जिनके लिए y = [x(x – 2)]2 एक वर्धमान फलन है।

प्रश्नावली 6.2 | Q 9. | Page 168

सिद्ध कीजिए कि `[0, pi/2]`  में `y = (4 sin theta)/(2 + cos theta) - theta, theta` का एक वर्धमान फलन है।

प्रश्नावली 6.2 | Q 10. | Page 168

सिद्ध कीजिए कि लघुगणकीय फलन `(0, infty)` में वर्धमान फलन है।

प्रश्नावली 6.2 | Q 11. | Page 168

सिद्ध कीजिए कि (-1,1) में f(x) = x2 - x + 1 से प्रदत्त फलन न तो वर्धमान है और न ही ह्रासमान है।

प्रश्नावली 6.2 | Q 12. | Page 168

निम्नलिखित में कौन से फलन `(0, pi/2)` में ह्रासमान है?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x
प्रश्नावली 6.2 | Q 13. | Page 168

निम्नलिखित अंतरालों में से किस अंतराल में f(x) = x100 + sin x - 1 द्वारा प्रदत्त फलन f निरंतर ह्रासमान है?

  • (0, 1)

  • `(pi/2, pi)`

  • `(0, pi/2)`

  • इनमें से कोई नहीं।

प्रश्नावली 6.2 | Q 14. | Page 168

a का वह न्यूनतम मान ज्ञात कीजिए जिसके लिए अंतराल [1, 2] में f(x) = x2 + ax + 1 से प्रदत्त फलन वर्धमान है।

प्रश्नावली 6.2 | Q 15. | Page 168

मान लीजिए [-1, 1] से असंयुक्त एक अंतराल I हो तो सिद्ध कीजिए कि I में f(x) `= "x" + 1/"x"`  से प्रदत्त फलन f, वर्धमान है।

प्रश्नावली 6.2 | Q 16. | Page 168

सिद्ध कीजिए कि फलन f(x) = log sin x, `(0, pi/2)` में वर्धमान और `(pi/2, pi)` में ह्रासमान है।

प्रश्नावली 6.2 | Q 17. | Page 169

सिद्ध कीजिए कि फलन f(x) = log |cos x| `(0, pi/2)` में वर्धमान और `((3pi)/2, 2pi)` में ह्रासमान है।

प्रश्नावली 6.2 | Q 18. | Page 169

सिद्ध कीजिए कि R में दिया गया फलन f(x) = x3 - 3x2 + 3x - 100 वर्धमान है।

प्रश्नावली 6.2 | Q 19. | Page 169

निम्नलिखित में से किस अंतराल में y = x2 e-x वर्धमान है?

  • `(- infty, infty)`

  • (-2, 0)

  • `(2, infty)`

  • (0, 2)

प्रश्नावली 6.3 [Pages 185 - 187]

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 6 अवकलज के अनुप्रयोग प्रश्नावली 6.3 [Pages 185 - 187]

प्रश्नावली 6.3 | Q 1. (i) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = (2x - 1)2 + 3

प्रश्नावली 6.3 | Q 1. (ii) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = 9x2 + 12x + 2

प्रश्नावली 6.3 | Q 1. (iii) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

f(x) = -(x - 1)2 + 10

प्रश्नावली 6.3 | Q 1. (iv) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:

g(x) = x3 + 1

प्रश्नावली 6.3 | Q 2. (i) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

f(x) = |x + 2| - 1

प्रश्नावली 6.3 | Q 2. (ii) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

g(x) = - |x + 1| + 3

प्रश्नावली 6.3 | Q 2. (iii) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = sin (2x) + 5

प्रश्नावली 6.3 | Q 2. (iv) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

f(x) = |sin 4x + 3|

प्रश्नावली 6.3 | Q 2. (v) | Page 185

निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:

h(x) = x + 1, x ∈ (-1,1)

प्रश्नावली 6.3 | Q 3. (i) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x2

प्रश्नावली 6.3 | Q 3. (ii) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) = x3 - 3x

प्रश्नावली 6.3 | Q 3. (iii) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

`h(x) = sin x + cos x, 0 < x < pi/2`

प्रश्नावली 6.3 | Q 3. (iv) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = sin x - cos x, 0 < x < 2π

प्रश्नावली 6.3 | Q 3. (v) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) = x3 - 6x2 + 9x + 15

प्रश्नावली 6.3 | Q 3. (vi) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) = `x/2 + 2/x, x > 0`

प्रश्नावली 6.3 | Q 3. (vii) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

g(x) `= 1/(x^2 + 2)`

प्रश्नावली 6.3 | Q 3. (viii) | Page 185

निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।

f(x) `= x sqrt(1 - x), 0 < x < 1`

प्रश्नावली 6.3 | Q 4. (i) | Page 185

सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

f(x) = ex

प्रश्नावली 6.3 | Q 4. (ii) | Page 185

सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

g(x) = log x

प्रश्नावली 6.3 | Q 4. (iii) | Page 185

सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:

h(x) = x3 + x2 + x + 1

प्रश्नावली 6.3 | Q 5. (i) | Page 185

प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = x3, x ∈ [-2, 2]

प्रश्नावली 6.3 | Q 5. (ii) | Page 185

प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = sin x + cos x, x `in [0, pi]`

प्रश्नावली 6.3 | Q 5. (iii) | Page 185

प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = 4x `- 1/2 x^2, x in [-2, 9/2]`

प्रश्नावली 6.3 | Q 5. (iv) | Page 185

प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

f(x) = (x - 1)2 + 3, x `in` [-3, 1]

प्रश्नावली 6.3 | Q 6. | Page 185

यदि लाभ फलन p(x) = 41 - 72x - 18x2 से प्रदत्त है तो किसी कंपनी द्वारा अर्जित उच्चतम लाभ ज्ञात कीजिए।

प्रश्नावली 6.3 | Q 7. | Page 185

अंतराल [0, 3] पर 3x4 - 8x3 + 12x2 - 48x + 25 के उच्चतम मान और निम्नतम मान ज्ञात कीजिए। 

प्रश्नावली 6.3 | Q 8. | Page 185

अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।

प्रश्नावली 6.3 | Q 9. | Page 185

फलन sin x + cos x का उच्चतम मान क्या है?

प्रश्नावली 6.3 | Q 10. | Page 186

अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।

प्रश्नावली 6.3 | Q 11. | Page 186

यदि दिया है कि अंतराल [0,2] में x = 1 पर फलन x4 - 62x2 + ax + 9 उच्चतम मान प्राप्त करता है तो a का मान ज्ञात कीजिए।

प्रश्नावली 6.3 | Q 12. | Page 186

[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।

प्रश्नावली 6.3 | Q 13. | Page 186

ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 24 है और जिनका गुणनफल उच्चतम हो।

प्रश्नावली 6.3 | Q 14. | Page 186

ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए ताकि x + y = 60 और xy3 उच्चतम हो।

प्रश्नावली 6.3 | Q 15. | Page 186

ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल x2y5 उच्चतम हो।

प्रश्नावली 6.3 | Q 16. | Page 186

ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 16 हो और जिनके घनों का योग निम्नतम हो।

प्रश्नावली 6.3 | Q 17. | Page 186

18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम होगा?

प्रश्नावली 6.3 | Q 18. | Page 186

45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।

प्रश्नावली 6.3 | Q 19. | Page 186

सिद्ध कीजिए कि एक दिए वृत्त के अंर्तगत सभी आयतों में वर्ग का क्षेत्रफल उच्चतम होता है।

प्रश्नावली 6.3 | Q 20. | Page 186

सिद्ध कीजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई आधार के व्यास के बराबर होती है।

प्रश्नावली 6.3 | Q 21. | Page 186

100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।

प्रश्नावली 6.3 | Q 22. | Page 186

एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?

प्रश्नावली 6.3 | Q 23. | Page 186

सिद्ध कीजिए कि R त्रिज्या के गोले के अन्तर्गत विशालतम शंकु का आयतन गोले के आयतन का `8/27`  होता है।

प्रश्नावली 6.3 | Q 24. | Page 186

सिद्ध कीजिए कि न्यूनतम पृष्ठ पर दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की `sqrt2` गुनी होती है।

प्रश्नावली 6.3 | Q 25. | Page 186

सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2`  होता है।

प्रश्नावली 6.3 | Q 26. | Page 187

सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्त्म आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण `sin^-1 (1/3)` होता है।

प्रश्न संख्या में सही उत्तर का चुनाव कीजिए।

प्रश्नावली 6.3 | Q 27. | Page 187

वक्र x2 = 2y पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:

  • `(2sqrt2,4)`

  • `(2sqrt2,0)`

  • (0, 0)

  • (2, 2)

प्रश्नावली 6.3 | Q 28. | Page 187

x के सभी वास्तविक मानों के लिए `(1 - x + x^2)/(1 + x = x^2)` का न्यूनतम मान है:

  • 0

  • 1

  • 3

  • `1/3`

प्रश्नावली 6.3 | Q 29. | Page 187

`y = [x (x - 1) + 1]^(1/3), 0 le x le 1,` का उच्चतम मान है:

  • `(1/3)^(1/3)`

  • `1/2`

  • 1

  • 0

विविध प्रश्नावली [Pages 193 - 194]

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 6 अवकलज के अनुप्रयोग विविध प्रश्नावली [Pages 193 - 194]

विविध प्रश्नावली | Q 1. | Page 193

सिद्ध कीजिए कि f (x) = `(log x)/x` द्वारा प्रदत्त फलन x = e पर उच्चतम है।

विविध प्रश्नावली | Q 2. | Page 193

किसी निश्चित आधार b के एक समद्विबाहु त्रिभुज की समान भुजाएँ 3 cm/s की दर से घट रही हैं। उस समय जब त्रिभुज की समान भुजाएँ आधार के बराबर हैं, उसका क्षेत्रफल कितनी तेजी से घट रहा है?

विविध प्रश्नावली | Q 3. | Page 193

अंतराल ज्ञात कीजिए जिन पर: f(x) = `(4 sin x - 2x - x cos x)/(2 + cos x)` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।

विविध प्रश्नावली | Q 4. | Page 193

अंतराल ज्ञात कीजिए जिन पर f(x) = `x^3 + 1/x^3, x ne 0` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।

विविध प्रश्नावली | Q 5. | Page 193

दीर्घवृत्त `x^2/a^2 + y^2/b^2 = 1` के अंतर्गत उस समद्विबाहु त्रिभुज का महत्तम क्षेत्रफल ज्ञात कीजिए जिसका शीर्ष दीर्घ अक्ष का एक सिरा है।

विविध प्रश्नावली | Q 6. | Page 194

आयताकार आधार व आयताकार दीवारों की 2 m गहरी और 8 m3 आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए Rs. 70/m2 और दीवारों पर Rs. 45/m2 व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?

विविध प्रश्नावली | Q 7. | Page 194

एक वृत्त और एक वर्ग के परिमापों का योग k है, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।

विविध प्रश्नावली | Q 8. | Page 194

किसी आयत के ऊपर बने अर्धवृत्त के आकार वाली खिड़की है। खिड़की का सम्पूर्ण परिमाप 10 m है। पूर्णतया खुली खिड़की से अधिकतम प्रकाश आने के लिए खिड़की की विमाएँ ज्ञात कीजिए।

विविध प्रश्नावली | Q 9. | Page 194

त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिन्दु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबाई (a2/3 + b2/3)3/2 है।

विविध प्रश्नावली | Q 10. | Page 194

उन बिन्दुओं को ज्ञात कीजिए जिन पर f(x) = (x – 2)4 (x + 1)4 द्वारा प्रदत्त फलन f का

  1. स्थानीय उच्चतम बिन्दु है,
  2. स्थानीय निम्नतम बिन्दु है,
  3. नत परिवर्तन बिन्दु है।
विविध प्रश्नावली | Q 11. | Page 194

f (x) = cos2 x + sin x, x ϵ [0, π] द्वारा प्रदत्त फलन f का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।

विविध प्रश्नावली | Q 12. | Page 194

सिद्ध कीजिए कि एक r त्रिज्या के गोले के अन्तर्गत उच्चतम आयतन के लम्ब वृत्तीय शंकु की ऊँचाई  `(4r)/3` है।

विविध प्रश्नावली | Q 13. | Page 194

मान लीजिए [a, b] पर परिभाषित एक फलन f है। इस प्रकार कि सभी x ∈ (a, b) के लिए f' (x) > 0 है तो सिद्ध कीजिए कि (a, b) पर f एक वर्धमान फलन है।

विविध प्रश्नावली | Q 14. | Page 194

सिद्ध कीजिए कि एक R त्रिज्या के गोले के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई  `(2R)/sqrt3` है। अधिकतम आयतन भी ज्ञात कीजिए।

विविध प्रश्नावली | Q 15. | Page 194

सिद्ध कीजिए कि अर्द्धशीर्ष कोण और ऊँचाई h के लम्ब वृत्तीय शंकु के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई शंकु के ऊँचाई की एक-तिहाई है और बेलन का अधिकतम आयतन `4/27` = πh3 tan2 α है।

विविध प्रश्नावली | Q 16. | Page 194

एक 10 m त्रिज्या की बेलनाकार टंकी में 314 m3/h की दर से गेहूँ भरा जाता है। भरे गए गेहूँ की गहराई की वृद्धि दर है:

  • 1 m/h

  • 0.1 m/h

  • 1.1 m/h

  • 0.5 m/h

Solutions for 6: अवकलज के अनुप्रयोग

प्रश्नावली 6.1प्रश्नावली 6.2प्रश्नावली 6.3विविध प्रश्नावली
NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग - Shaalaa.com

NCERT solutions for Mathematics - Part 1 and 2 [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग

Shaalaa.com has the CBSE Mathematics Mathematics - Part 1 and 2 [Hindi] Class 12 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Mathematics - Part 1 and 2 [Hindi] Class 12 CBSE 6 (अवकलज के अनुप्रयोग) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics - Part 1 and 2 [Hindi] Class 12 chapter 6 अवकलज के अनुप्रयोग are उच्चतम और निम्नतम, एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान, सन्निकटन, अवकलज के अनुप्रयोग, राशियों के परिवर्तन की दर, वर्धमान और हासमान फलन, स्पर्श रेखाएँ और अभिलंब, उच्चतम और निम्नतम, एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान, सन्निकटन, अवकलज के अनुप्रयोग, राशियों के परिवर्तन की दर, वर्धमान और हासमान फलन, स्पर्श रेखाएँ और अभिलंब.

Using NCERT Mathematics - Part 1 and 2 [Hindi] Class 12 solutions अवकलज के अनुप्रयोग exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics - Part 1 and 2 [Hindi] Class 12 students prefer NCERT Textbook Solutions to score more in exams.

Get the free view of Chapter 6, अवकलज के अनुप्रयोग Mathematics - Part 1 and 2 [Hindi] Class 12 additional questions for Mathematics Mathematics - Part 1 and 2 [Hindi] Class 12 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×