Advertisements
Advertisements
Question
एक बाल्टी के दोनों वृत्ताकार सिरों के व्यास 44 cm और 24 cm हैं तथा बाल्टी की ऊँचाई 35 cm है। इस बाल्टी की धारिता ______ है।
Options
32.7 लीटर
33.7 लीटर
34.7 लीटर
31.7 लीटर
Solution
एक बाल्टी के दोनों वृत्ताकार सिरों के व्यास 44 cm और 24 cm हैं तथा बाल्टी की ऊँचाई 35 cm है। इस बाल्टी की धारिता 32.7 लीटर है।
स्पष्टीकरण:
दिया गया है, बाल्टी के एक सिरे का व्यास
2R = 44
⇒ R = 22 cm ...[∵ व्यास, r = 2 × त्रिज्या]
और दूसरे सिरे का व्यास,
2r = 24
⇒ r = 12 cm ...[∵ व्यास, r = 2 × त्रिज्या]
बाल्टी की ऊँचाई,
h = 35 cm
चूँकि, बाल्टी का आकार शंकु के छिन्नक के समान दिखता है।
∴ बाल्टी की क्षमता
= शंकु के छिन्नक का आयतन
= `1/3 pi"h"["R"^2 + "r"^2 + "Rr"]`
= `1/3 xx [pi xx 35(22)^2 + (12)^2 + 22 xx 12]`
= `(35pi)/3 [484 + 144 + 264]`
= `(35pi xx 892)/3`
= `(35 xx 22 xx 892)/(3 xx 7)`
= 32706.6 cm3
= 32.7 लीटर ...[∵ 1000 cm3 = 1 लीटर]
अतः, बाल्टी की क्षमता 32.7 लीटर है।
APPEARS IN
RELATED QUESTIONS
पानी पीने वाला एक गिलास 14 सेमी ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 सेमी और 2 सेमी हैं। इस गिलास की धारिता ज्ञात कीजिए। [उपयोग π = 22/7]
एक तुर्की टोपी शंकु के एक छिन्नक के आकार की है। यदि इसके खुले सिरे की त्रिज्या 10 सेमी है, ऊपरी सिरे की त्रिज्या 4 सेमी है और टोपी की तिर्यक ऊँचाई 15 सेमी है, तो इसके बनाने में प्रयुक्त पदार्थ का क्षेत्रफल ज्ञात कीजिए।
[उपयोग π = 22/7]
एक शंकु के छिन्नक के आयतन का सूत्र व्युत्पन्न कीजिए।
एक गिलास का आकार प्रायः निम्न रूप का होता है-
एक शंकु को उसके आधार के समांतर एक तल की सहायता से काटा जाता है और फिर तल के एक ओर बने शंकु को हटा दिया जाता है। तल के दूसरी ओर बचा हुआ नया भाग कहलाता है एक ______।
क्रमशः आंतरिक और बाहरी व्यास 4 cm और 8 cm वाले एक धातु के गोलाकार खोल को पिघलाकर आधार व्यास 8 cm के एक शंकु के आकार में ढाला जाता है। इस शंकु की ऊँचाई ______ है।
शंकु के एक छिन्नक का आयतन `1/3 pih[r_1^2 + r_2^2 - r_1r_2]` होता है, जहाँ h छिन्नक की ऊर्घ्वाधर ऊँचाई है और r1, r2 सिरों की त्रिज्याएँ हैं।
शंकु के एक छिन्नक का वक्र पृष्ठीय क्षेत्रफल πl (r1 + r2) होता है, जहाँ `l = sqrt(h^2 + (r_1 + r _2)^2)` है, r1 और r2 छिन्नक के दोनों सिरों की त्रिज्याएँ हैं तथा h ऊर्ध्वाधर ऊँचाई है।
धातु की एक खुली बाल्टी इस आकार जैसी है कि उसी धातु की चादर से बने बेलनाकार (खोखला) आधार पर एक शंकु का छिन्नक रखा हुआ है। इसके लिए प्रयुक्त धातु की चादर का पृष्ठीय क्षेत्रफल बराबर है :
शंकु के छिन्नक का वक्र पृष्ठीय क्षेत्रफल + वृत्ताकार आधार का क्षेत्रफल + बेलन का वक्र पृष्ठीय क्षेत्रफल
कोई बाल्टी एक शंकु के छिन्नक के आकार की है और इसमें 28.490 लीटर पानी आ सकता है। इसके ऊपरी और निचले सिरों की त्रिज्याएँ क्रमशः 28 cm और 21 cm हैं। इस बाल्टी की ऊँचाई ज्ञात कीजिए।