Advertisements
Advertisements
Question
शंकु के एक छिन्नक का आयतन `1/3 pih[r_1^2 + r_2^2 - r_1r_2]` होता है, जहाँ h छिन्नक की ऊर्घ्वाधर ऊँचाई है और r1, r2 सिरों की त्रिज्याएँ हैं।
Options
सत्य
असत्य
Solution
यह कथन असत्य है।
स्पष्टीकरण:
चूंकि, एक शंकु के छिन्नक का आयतन `1/3 pi"h"["r"_1^2 + "r"_2^2 + "r"_1"r"_2]` है, जहां h ऊर्ध्वाधर ऊंचाई है छिन्नक और r1, r2 सिरों की त्रिज्याएँ हैं।
APPEARS IN
RELATED QUESTIONS
पानी पीने वाला एक गिलास 14 सेमी ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 सेमी और 2 सेमी हैं। इस गिलास की धारिता ज्ञात कीजिए। [उपयोग π = 22/7]
एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 सेमी है तथा इसके वृत्तीय सिरों के परिमाप 18 सेमी और 6 सेमी हैं। इस छिन्नक का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
एक तुर्की टोपी शंकु के एक छिन्नक के आकार की है। यदि इसके खुले सिरे की त्रिज्या 10 सेमी है, ऊपरी सिरे की त्रिज्या 4 सेमी है और टोपी की तिर्यक ऊँचाई 15 सेमी है, तो इसके बनाने में प्रयुक्त पदार्थ का क्षेत्रफल ज्ञात कीजिए।
[उपयोग π = 22/7]
एक शंकु के छिन्नक के आयतन का सूत्र व्युत्पन्न कीजिए।
एक गिलास का आकार प्रायः निम्न रूप का होता है-
एक बाल्टी के दोनों वृत्ताकार सिरों के व्यास 44 cm और 24 cm हैं तथा बाल्टी की ऊँचाई 35 cm है। इस बाल्टी की धारिता ______ है।
एक लंब वृत्तीय शंकु में, उसके आधार के समांतर खींचे गये तल द्वारा काटा गया अनुप्रस्थ-काट होता है एक ______।
शंकु के एक छिन्नक का वक्र पृष्ठीय क्षेत्रफल πl (r1 + r2) होता है, जहाँ `l = sqrt(h^2 + (r_1 + r _2)^2)` है, r1 और r2 छिन्नक के दोनों सिरों की त्रिज्याएँ हैं तथा h ऊर्ध्वाधर ऊँचाई है।
धातु की एक खुली बाल्टी इस आकार जैसी है कि उसी धातु की चादर से बने बेलनाकार (खोखला) आधार पर एक शंकु का छिन्नक रखा हुआ है। इसके लिए प्रयुक्त धातु की चादर का पृष्ठीय क्षेत्रफल बराबर है :
शंकु के छिन्नक का वक्र पृष्ठीय क्षेत्रफल + वृत्ताकार आधार का क्षेत्रफल + बेलन का वक्र पृष्ठीय क्षेत्रफल
कोई बाल्टी एक शंकु के छिन्नक के आकार की है और इसमें 28.490 लीटर पानी आ सकता है। इसके ऊपरी और निचले सिरों की त्रिज्याएँ क्रमशः 28 cm और 21 cm हैं। इस बाल्टी की ऊँचाई ज्ञात कीजिए।