Advertisements
Advertisements
Question
एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 सेमी है तथा इसके वृत्तीय सिरों के परिमाप 18 सेमी और 6 सेमी हैं। इस छिन्नक का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Solution
छिन्नक के ऊपरी वृत्ताकार सिरे का परिमाप = 18 cm
2πr1 =18
r1 = 9/π
छिन्नक के निचले सिरे का परिमाप = 6 सेमी
2πr2 = 6
r2 = 3/π
छिन्नक की तिरछी ऊँचाई (l) = 4 cm
छिन्नक का CSA = (r1 + r2) L
`=pi(9/pi+3/pi)4`
= 12 x 4
= 48 सेमी2
अत: छिन्नक का वक्र पृष्ठीय क्षेत्रफल 48 सेमी2 है।
APPEARS IN
RELATED QUESTIONS
पानी पीने वाला एक गिलास 14 सेमी ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 सेमी और 2 सेमी हैं। इस गिलास की धारिता ज्ञात कीजिए। [उपयोग π = 22/7]
धातु की चादर से बना और ऊपर से खुला एक बर्तन शंकु के एक छिन्नक के आकार का है, जिसकी ऊँचाई 16 सेमी है तथा निचले और ऊपरी सिरों की त्रिज्याएँ क्रमश: 8 सेमी और 20 सेमी हैं। 20 रु प्रति लीटर की दर से, इस बर्तन को पूरा भर सकने वाले दूध का मूल्य ज्ञात कीजिए। साथ ही, इस बर्तन को बनाने के लिए प्रयुक्त धातु की चादर का मूल्य 8 रु प्रति 100 वर्ग सेमी की दर से ज्ञात कीजिए। [उपयोग π = 3.14]
20 सेमी ऊँचाई और शीर्ष कोण 60 डिग्री वाले एक शंकु को उसकी ऊँचाई के बीचोबीच से होकर जाते हुए एक तल से दो भागों में काटा गया है, जबकि तल शंकु के आधार के समांतर है। यदि इस प्राप्त शंकु के छिन्नक को व्यास `1/16` सेमी वाले एक तार के रूप में बदल दिया जाता है तो तार की लंबाई ज्ञात कीजिए। [उपयोग π = `22/7`]
शंकु के एक छिन्नक के लिए, पूर्व स्पष्ट किए संकेतों का प्रयोग करते हुए, वक्र पृष्ठीय क्षेत्र फल और संपूर्ण पृष्ठीय क्षेत्र फल के उन सूत्रों को सिद्ध कीजिए,
एक शंकु के छिन्नक के आयतन का सूत्र व्युत्पन्न कीजिए।
बैडमिंटन खेलने में प्रयोग की जाने वाली शटलकॉक ( चिड़िया ) का आकार निम्नलिखित का संयोजन ______ है।
एक शंकु को उसके आधार के समांतर एक तल की सहायता से काटा जाता है और फिर तल के एक ओर बने शंकु को हटा दिया जाता है। तल के दूसरी ओर बचा हुआ नया भाग कहलाता है एक ______।
क्रमशः आंतरिक और बाहरी व्यास 4 cm और 8 cm वाले एक धातु के गोलाकार खोल को पिघलाकर आधार व्यास 8 cm के एक शंकु के आकार में ढाला जाता है। इस शंकु की ऊँचाई ______ है।
शंकु के एक छिन्नक का आयतन `1/3 pih[r_1^2 + r_2^2 - r_1r_2]` होता है, जहाँ h छिन्नक की ऊर्घ्वाधर ऊँचाई है और r1, r2 सिरों की त्रिज्याएँ हैं।
शंकु के एक छिन्नक का वक्र पृष्ठीय क्षेत्रफल πl (r1 + r2) होता है, जहाँ `l = sqrt(h^2 + (r_1 + r _2)^2)` है, r1 और r2 छिन्नक के दोनों सिरों की त्रिज्याएँ हैं तथा h ऊर्ध्वाधर ऊँचाई है।