Advertisements
Advertisements
Question
एक पार्क में बने 5 m त्रिज्या वाले वृत्त पर खड़ी तीन लड़कियाँ रेशमा, सलमा एवं मनदीप खेल रही हैं। रेशमा एक गेंद को सलमा के पास, सलमा मनदीप के पास तथा मनदीप रेशमा के पास फेंकती है। यदि रेशमा तथा सलमा के बीच और सलमा तथा मनदीप के बीच की प्रत्येक दूरी 6 m हो, तो रेशमा और मनदीप के बीच की दूरी क्या है?
Solution
RS और SM पर क्रमशः लम्ब OA और OB खींचिए।
AR = AS = `6/2` = 3m
OR = OS = OM = 5m (वृत्त की त्रिज्या)
ΔOAR में,
OA2 + AR2 = OR2
OA2 + (3m)2 = (5m)2
OA2 = (25 − 9) m2 = 16m2
OA = 4m
ORSM एक पतंग होगी (OR = OM और RS = SM)। हम जानते हैं कि एक पतंग के विकर्ण लंबवत होते हैं और दोनों समद्विबाहु त्रिभुजों के उभयनिष्ठ विकर्ण दूसरे विकर्ण से समद्विभाजित होते हैं।
∴ ∠RCS 90° का होगा और RC = CM
ΔORS का क्षेत्रफल = `1/2 xx OA xx RS`
`1/2 xx RC xx OS` = `1/2 xx 4 xx 6`
Rc × 5 = 24
RC = 4.8
RM = 2RC
= 2(4.8)
= 9.6
इसलिए, रेशमा और मनदीप के बीच की दूरी 9.6 m है।
APPEARS IN
RELATED QUESTIONS
5 cm तथा 3 cm त्रिज्या वाले दो वृत्त दो बिन्दुओं पर प्रतिच्छेद करते हैं तथा उनके केन्द्रों बीच की दूरी 4 cm है। उभयनिष्ठ जीवा की लम्बाई ज्ञात कीजिए।
यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि एक जीवा के खंड दूसरी जीवा के संगत खंडों के बराबर हैं।
यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि प्रतिच्छेद बिन्दु को केंद्र से मिलाने वाली रेखा जीवाओं से बराबर कोण बनाती है।
यदि एक रेखा दो संकेंद्री वृतों (एक ही केंद्र वाले वृत्त) को, जिनका केंद्र O है, A, B, C और D पर प्रतिच्छेद करे, तो सिद्ध कीजिए AB = CD है (देखिए आकृति में)।
20m त्रिज्या का एक गोल पार्क (वृत्ताकार) एक कालोनी में स्थित है। तीन लड़के अंकुर, सैय्यद तथा डेविड इसकी परिसीमा पर बराबर दूरी पर बैठे हैं और प्रत्येक के हाथ में एक खिलौना टेलीफोन आपस में बात करने के लिए है। प्रत्येक फोन की डोरी की लम्बाई ज्ञात कीजिए।
एक उभयनिष्ठ कर्ण AB पर दो समकोण त्रिभुज ACB और ADB इस प्रकार खींचे गए हैं कि वे विपरीत ओर स्थित हैं। सिद्ध कीजिए कि ∠BAC = ∠BDC हैं।
एक त्रिभुज ABC का परिकेंद्र O है। सिद्ध कीजिए कि ∠OBC + ∠BAC = 90º है।
यदि एक वृत्त की दो बराबर जीवाएँ परस्पर प्रतिच्छेद करें, तो सिद्ध कीजिए कि एक जीवा के दो भाग दूसरी जीवा के दोनों भागों के पृथक-पृथक बराबर होते हैं।