Advertisements
Advertisements
Question
Express the following as a single logarithm:
log 144 - log 72 + log 150 - log 50
Solution
log 144 - log 72 + log 150 - log 50
= log (24 x 32) - log (23 x 32) + log (2 x 3 x 52) - log (2 x 52)
= log 24 + log 32 - {log 23 + log 32} + log 2 + log 3 + 52 - {log 2 + log 52}
= 4 log 2 + 2 log 3 - 3 log 2 - 2 log 3 + log 2 + log 3 + 2 log 5 - log 2 - 2 log 5
= log 2 + log 3
= log (2 x 3)
= log 6.
APPEARS IN
RELATED QUESTIONS
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
Simplify : log (a)3 ÷ log a
Express the following in terms of log 2 and log 3: log 648
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
If 2 log x + 1 = 40, find: log 5x
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
If log 4 = 0.6020, find the value of each of the following: log2.5
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
Find the value of:
`("log"sqrt(8))/(8)`