Advertisements
Advertisements
Question
f : {1, 2, 3} → {a, b, c}, f(1) = a, f(2) = b तथा f(3) = c, द्वारा प्रदत्त फलन f पर विचार कीजिए। f -1 ज्ञात कीजिए और सिद्ध कीजिए कि (f -1)-1= f है।
Solution
f : {1, 2, 3} → {a, b, c}
f(1) = a, f(2) = b, f(3) = c
g : {a, b, c} → {1, 2, 3}
g(a) = 1, g(b) = 2, g(c) = 3
अब,
(fog)(a) = f(g(a)) = f(1) = a
(fog)(b) = f(g(b)) = f(1) = b
(fog)(c) = f(g(c)) = f(1) = c
और
(gof)(1) = g(f(1)) = g(a) = 1
(gof)(2) = g(f(2)) = g(b) = 2
(gof)(3) = g (f(3)) = g(c) = 3
gof = Ix और fog = Iy जहां X = {1, 2, 3} और Y = {a, b, c}
∴ f-1 = g
f-1 : {a, b, c} → {1, 2, 3}
f-1(a) = 1, f-1(b) = 2, f-1(c) = 3
h : {1, 2, 3} → {a, b, c}
h(1) = a, h(2) = b, h(3) = c
अब
(goh)(1) = g(h(1)) = g(a) = 1
(goh)(2) = g(h(2)) = g(b) = 2
(goh)(3) = g(h(3)) = g(c) = 3
और
(hog)(a) = h(g(a)) = h(1) = a
(hog)(b) = h(g(b)) = h(2) = b
(hog)(c) = h(g(c)) = h(3) = c
goh = Ix और hog = It जहां X = {1, 2, 3} और Y = {a, b, c}
g-1 = h
⇒ (f-1)-1 = h
⇒ h = f
= (f-1)-1 = f
APPEARS IN
RELATED QUESTIONS
मान लीजिए कि f : {1, 3, 4} → {1,2, 5} तथा f : {1,2, 5} → {1, 3}, f = {(1, 2), (3, 5), (4, 1} तथा g = {(1, 3), (2, 3), (5, 1} द्वारा प्रदत्त हैं। gof ज्ञात कीजिए।
gof तथा fog ज्ञात कीजिए, यदि
f(x) = |x| तथा g(x) = |5x - 2|
gof तथा fog ज्ञात कीजिए, यदि
f(x) = 8x3 तथा g(x) = x1/3
यदि f (x) = `((4x + 3))/((6x - 4)), x ne 2/3,` तो सिद्ध कीजिए कि सभी `x ne 2/3` के लिए fof(x) = x है। f का प्रतिलोम फलन क्या है?
कारण सहित बतलाइए कि क्या निम्नलिखित फलन प्रतिलोम हैं?
f : {1, 2, 3, 4} → {10} जहाँ
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
कारण सहित बतलाइए कि क्या निम्नलिखित फलन प्रतिलोम हैं?
g : {5, 6, 7, 8} → {1, 2, 3, 4} जहाँ
g = {(5, 4), (6, 3), (7, 4), (8, 2)}
f(x) = 4x + 3 द्वारा प्रदत्त फलन f : R → R पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है। f का प्रतिलोम फलन ज्ञात कीजिए।
f(x) = x2 + 4 द्वारा प्रदत्त फलन f : R+ → [4, ∞] पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा F का प्रतिलोम f-1, f-1(y) = `sqrt (y - 4)`, द्वारा प्राप्त होता है, जहाँ R+ सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है।
f(x) = 9x2 + 6x - 5 द्वारा प्रदत्त फलन f : R+ → [-5, ∞] पर विचार कीजिए। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f-1(y) = `(((sqrt(y + 6)) - 1)/3)` है।
मान लीजिए कि f : X → Y एक व्युत्क्रमणीय फलन है। सिद्ध कीजिए कि f का प्रतिलोम फलन अद्वितीय (unique) है।
(संकेत: कल्पना कीजिये कि f के दो प्रतिलोम फलन g1 तथा g2 है। तब सभी y ∈ Y के लिए fog1(y) = 1Y(y) = fog2(y) है। अब f के एकैकी गुण का प्रयोग कीजिए)
मान लीजिए कि f : X → Y एक व्युत्क्रमणीय फलन है। सिद्ध कीजिए कि f-1 का प्रतिलोम f है अर्थात् (f -1)-1 = f है।
यदि f : R → R, f(x) = `(3 - x^3)^(1/3)`, द्वारा प्रदत्त है, तो fof(x) बराबर है।
मान लीजिए कि f(x) = `(4x)/(3x + 4)` द्वारा परिभाषित एक फलन f : R - `{-4/3}` → R है। f का प्रतिलोम, अर्थात् प्रतिचित्र (Map) g : परिसर f → R - `{-4/3}`, निम्नलिखित में से किसके द्वारा प्राप्त होगा:
किसी प्रदत्त अरिक्त समुच्चय X के लिए एक द्विआधारी संक्रिया * : P(X) × P(X) → P(X) पर विचार कीजिए, जो A * B = A ∩ B, ∀A, B ∈ P(X) द्वारा परिभाषित है, जहाँ P(X) समुच्चय X का घात समुच्चय (Power set) है | सिद्ध कीजिए कि इस संक्रिया का तत्समक अवयव X है तथा संक्रिया * के लिए P(X) में केवल X व्युत्क्रमणीय अवयव है
मान लीजिए कि S = {a, b, c} तथा T = {1, 2, 3} है | S से T तक के निम्नलिखित फलनों F के लिए F-1 ज्ञात कीजिए, यदि उसका अस्तित्व है:
F = {(a, 3), (b, 2), (c, 1)}
मान लीजिए कि S = {a, b, c} तथा T = {1, 2, 3} है | S से T तक के निम्नलिखित फलन F के लिए F-1 ज्ञात कीजिए, यदि उसका अस्तित्व है:
F = {(a, 2), (b, 1), (c, 1)}
किसी प्रदत्त अरिक्त समुच्चय X के लिए मान लीजिए कि * : P(X) × P(X) → P(X), जहाँ A * B = (A - B) ∪ (B - A), ∀A, B ∈ P(X) द्वारा परिभाषित है | सिद्ध कीजिए कि रिक्त समुच्चय Φ, संक्रिया * का तत्समक है तथा P(X) के समस्त अवयव A व्युत्क्रमणीय है, इस प्रकार कि A-1 = A.(संकेत : (A - Φ) ∪ (Φ - A) = A. तथा (A - A) ∪ (A - A) = A * A = Φ).
मान लीजिए कि A = {-1, 0, 1, 2}, B = {-4, -2, 0, 2} और f, g : A → B, क्रमशः f(x) = x2 - x, x ∈ A तथा g(x) = `2|x - 1/2| - 1, x ∈ A` द्वारा परिभाषित फलन हैं | क्या f तथा g समान हैं? अपने उत्तर का औचित्य भी बतलाइए | (संकेत : नोट कीजिए कि दो फलन f : A → B तथा g : A → B समान कहलाते हैं यदि f(a) = g(a) ∀ a ∈ A हो।)