English
Karnataka Board PUCPUC Science 2nd PUC Class 12

Figure shows a potentiometer with a cell of 2.0 V and internal resistance 0.40 Ω maintaining a potential drop across the resistor wire AB. - Physics

Advertisements
Advertisements

Question

Figure shows a potentiometer with a cell of 2.0 V and internal resistance 0.40 Ω maintaining a potential drop across the resistor wire AB. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents up to a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, very high resistance of 600 kΩ is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the balance point found similarly, turns out to be at 82.3 cm length of the wire.

(a) What is the value ε?

(b) What purpose does the high resistance of 600 kΩ have?

(c) Is the balance point affected by this high resistance?

(d) Is the balance point affected by the internal resistance of the driver cell?

(e) Would the method work in the above situation if the driver cell of the potentiometer had an emf of 1.0 V instead of 2.0 V?

(f) Would the circuit work well for determining an extremely small emf, say of the order of a few mV (such as the typical emf of a thermo-couple)? If not, how will you modify the circuit?

Numerical

Solution

(a) Constant emf of the given standard cell, E1 = 1.02 V

Balance point on the wire, l= 67.3 cm

A cell of unknown emf, ε, replaced the standard cell. Therefore, new balance point on the wire, l = 82.3 cm

The relation connecting emf and balance point is,

`"E"_1/"l"_1 = ε/"l"`

ε = `"l"/"l"_1 xx "E"_1`

= `82.3/67.3 xx 1.02`

= 1.247 V

The value of unknown emf is 1.247 V.

(b) The purpose of using the high resistance of 600 kΩ is to reduce the current through the galvanometer when the movable contact is far from the balance point.

(c) The balance point is not affected by the presence of high resistance.

(d) The point is not affected by the internal resistance of the driver cell.

(e) The method would not work if the driver cell of the potentiometer had an emf of 1.0 V instead of 2.0 V. This is because if the emf of the driver cell of the potentiometer is less than the emf of the other cell, then there would be no balance point on the wire.

(f) The circuit would not work well for determining an extremely small emf. As the circuit would be unstable, the balance point would be close to ending A. Hence, there would be a large percentage of errors.

The given circuit can be modified if a series resistance is connected with the wire AB. The potential drop across AB is slightly greater than the emf measured. The percentage error would be small.

shaalaa.com
Potentiometer
  Is there an error in this question or solution?
Chapter 3: Current Electricity - Exercise [Page 130]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 3 Current Electricity
Exercise | Q 3.22 | Page 130
NCERT Physics [English] Class 12
Chapter 3 Current Electricity
Exercise | Q 22 | Page 130

RELATED QUESTIONS

(i) State the principle on which a potentiometer works. How can a given potentiometer be made more sensitive?

(ii) In the graph shown below for two potentiometers, state with reason which of the two potentiometers, A or B, is more sensitive.

The net resistance of an ammeter should be small to ensure that _______________ .


Figure below shows two resistors R1 and R2 connected to a battery having an emf of 40V and negligible internal resistance. A voltmeter having a resistance of. 300 Ω is used to measure the potential difference across R1 Find the reading of the voltmeter.


Describe how a potentiometer is used to compare the EMFs of two cells by connecting the cells individually.


The resistance of a potentiometer wire is 8 Ω and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box if it is desired to have a potential drop of 1 µV/mm?


The emf of a cell is balanced by a length of 120 cm of a potentiometer wire. When the cell is shunted by a resistance of 10 Ω, the balancing length is reduced by 20 cm. Find the internal resistance of the cell.


Two cells having unknown emfs E1 and E2 (E1 > E2) are connected in potentiometer circuit, so as to assist each other. The null point obtained is at 490 cm from the higher potential end. When cell E2 is connected, so as to oppose cell E1, the null point is obtained at 90 cm from the same end. The ratio of the emfs of two cells `("E"_1/"E"_2)` is ______.


A 10 m long wire of resistance 20 Q is connected in series with a battery of emf 3 V and a resistance of 10 Ω. The potential gradient along the wire in V/m is ________.


The resistance of the potentiometer wire should ideally be ____________.


The resistivity of potentiometer wire is 40 × 10-8 ohm - metre and its area of cross-section is 8 × 10-6 m2. If 0.2 ampere current is flowing through the wire, the potential gradient of the wire is ______.


A potentiometer wire has length L For given cell of emf E, the balancing length is `"L"/3` from 3 the positive end of the wire. If the length of the potentiometer wire is increased by 50%, then for the same cell, the balance point is obtained at length.


A cell of e.m.f. 'E' is connected across a resistance 'R'. The potential difference across the terminals of the cell is 90% ofE. The internal resistance of the cell is ______.


A potentiometer wire of length 'L' and a resistance 'r' are connected in series with a battery of E.M.F. 'E0' and a resistance 'r1'. A cell of unknown E.M.F, 'E' is balanced at a length 'ℓ' of the potentiometer wire. The unknown E.M.F. E is given by ______ 


The sensitivity of the potentiometer can be increased by ______.


A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves ______.


Sensitivity of potentiometer can be increased by ______.

The value of current I in the network shown in fig.


For the circuit shown, with R1 = 1.0 Ω, R2 = 2.0 Ω, E1 = 2 V, and E2 = E3 = 4 V, the potential difference between the points 'a' and 'b' is approximately (in V) ______.


Draw a neat labelled diagram of Internal resistance of a cell using a potentiometer.


Three identical cells each of emf 'e' are connected in parallel to form a battery. What is the emf of the battery?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×