Advertisements
Advertisements
Question
Find a linear approximation for the following functions at the indicated points.
h(x) = `x/(x + 1), x_0` = 1
Solution
h(x0) = h((1)
= `1/(1 + 1)`
= `1/2`
h'(x) `((x + 1) xx 1 - x xx 1)/(x + 1)^2`
= `(x + 1 - x)/(x + 1)^2`
= `1/(x + 1)^2`
h'(x0) = h'(1) = `1/4`
L(x) = h(x0) + h'(x0)(x – x0)
= `1/2 + 1/4 (x - 1)`
= `(2 + x - 1)/4`
= `(x + 1)/4`
APPEARS IN
RELATED QUESTIONS
Use the linear approximation to find approximate values of `(123)^(2/3)`
Use the linear approximation to find approximate values of `root(4)(15)`
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation T = `2pi sqrt(l/g)` where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of l
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find df for f(x) = x2 + 3x and evaluate it for x = 2 and dx = 0.1
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x3 – 2x2, x = 2, Δx = dx = 0.5
Assuming log10 e = 0.4343, find an approximate value of Iog10 1003
An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and the radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately
Assume that the cross-section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 1 to 1.1 hours?
A coat of paint of thickness 0.2 cm is applied to the faces of cube whose edge is 10 cm. Use the differentials to find approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of paint used to paint this cube
Choose the correct alternative:
If u(x, y) = `"e"^(x^2 + y^2)`, then `(delu)/(delx)` is equal to
Choose the correct alternative:
The change in the surface area S = 6x2 of a cube when the edge length varies from x0 to x0 + dx is