English

Find the Coordinates of the Centre and Radius of Each of the Following Circles: 2x2 + 2y2 − 3x + 5y = 7 - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7

Solution

The given equation can be rewritten as

\[x^2 + y^2 - \frac{3x}{2} + \frac{5y}{2} - \frac{7}{2} = 0\]

∴ Centre = \[\left( \frac{3}{4}, \frac{- 5}{4} \right)\]

And, radius = \[\sqrt{\left( \frac{3}{4} \right)^2 + \left( \frac{- 5}{4} \right)^2 + \frac{7}{2}} = \sqrt{\frac{34 + 56}{16}} = \sqrt{\frac{90}{16}} = \frac{3\sqrt{10}}{4}\]

shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.2 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.2 | Q 1.2 | Page 31

RELATED QUESTIONS

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×