English

Find the Equations of the Circles Passing Through Two Points on Y-axis at Distances 3 from the Origin and Having Radius 5. - Mathematics

Advertisements
Advertisements

Question

Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.

Solution

Let the required equation of the circle be

\[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]
The circle passes through the points (0, 3) and (0, −3).
∴ \[\left( 0 - h \right)^2 + \left( 3 - k \right)^2 = a^2\] ...(1)
And,
\[\left( 0 - h \right)^2 + \left( - 3 - k \right)^2 = a^2\]...(2)
Solving (1) and (2), we get:
k=0
Given:
Radius = 5
∴ a2 = 25
So, from equation (2), we have:
\[h^2 + 9 = 25 \Rightarrow h = \pm 4\]
Hence, the required equation is
\[\left( x \pm 4 \right)^2 + y^2 = 25\] , which can be rewritten as \[x^2 \pm 8x + y^2 - 9 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.1 | Q 13 | Page 21

RELATED QUESTIONS

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the lines 2x  3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of a circle with radius 5 and touching both the coordinate axes is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×