English

Find the Equation of a Circlewhich Touches Both the Axes at a Distance of 6 Units from the Origin. - Mathematics

Advertisements
Advertisements

Question

Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.

Solution

Let (hk) be the centre of a circle with radius a.
Thus, its equation will be

\[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]

(i) Let the required equation of the circle be

\[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]
It is given that the circle passes through the points (6, 0) and (0, 6).
∴\[\left( 6 - h \right)^2 + \left( 0 - k \right)^2 = 6^2\]
And,
\[\left( 0 - h \right)^2 + \left( 6 - k \right)^2 = 6^2\]
\[\Rightarrow \left( 6 - h \right)^2 + \left( - k \right)^2 = 36\]
\[ \Rightarrow 36 + h^2 - 12h + k^2 = 36\]
\[ \Rightarrow h^2 + k^2 = 12h . . . (1)\]
Also,
\[h^2 + 36 + k^2 - 12k = 36\]
\[\Rightarrow h^2 + k^2 = 12k\] ...(2)
From (1) and (2), we get:
\[12k = 12h \Rightarrow h = k\]
∴ From equation (2), we have:
\[k^2 + k^2 = 12k\]
\[ \Rightarrow k^2 - 6k = 0\]
\[ \Rightarrow k\left( k - 6 \right) = 0\]
\[ \Rightarrow k = 6 \left( \because k > 0 \right)\]
Consequently, we get:
h = 6
Hence, the required equation of the circle is
\[\left( x - 6 \right)^2 + \left( y - 6 \right)^2 = 36\]
\[x^2 + y^2 - 12x - 12y + 36 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.1 | Q 7.1 | Page 21

RELATED QUESTIONS

Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


The equation of a circle with radius 5 and touching both the coordinate axes is


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×