English

If the Point (λ, λ + 1) Lies Inside the Region Bounded by the Curve \[X = \Sqrt{25 - Y^2}\] And Y-axis, Then λ Belongs to the Interva - Mathematics

Advertisements
Advertisements

Question

If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval

Options

  • (−1, 3)

  • (−4, 3)

  • (−∞, −4) ∪ (3, ∞)

  • none of these

MCQ

Solution

(−1, 3)

The given equation of the curve is \[x^2 + y^2 = 25\].

Since (λ, λ + 1) lies inside the region bounded by the curve

\[x^2 + y^2 = 25\] and the y-axis, we have:

\[\lambda^2 + \left( \lambda + 1 \right)^2 < 25\],
\[\text { provided } \lambda + 1 > 0\]

\[\Rightarrow \lambda^2 + \lambda^2 + 1 + 2\lambda < 25, \lambda > - 1\]

\[ \Rightarrow 2 \lambda^2 + 2\lambda - 24 < 0, \lambda > - 1\]

\[ \Rightarrow \lambda^2 + \lambda - 12 < 0, \lambda > - 1\]

\[ \Rightarrow \left( \lambda - 3 \right)\left( \lambda + 4 \right) < 0, \lambda > - 1\]

\[ \Rightarrow - 4 < \lambda < 3, \lambda > - 1\]

\[ \Rightarrow \lambda \in \left( - 1, 3 \right)\]

shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.6 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.6 | Q 10 | Page 39

RELATED QUESTIONS

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×