हिंदी

If the Point (λ, λ + 1) Lies Inside the Region Bounded by the Curve \[X = \Sqrt{25 - Y^2}\] And Y-axis, Then λ Belongs to the Interva - Mathematics

Advertisements
Advertisements

प्रश्न

If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval

विकल्प

  • (−1, 3)

  • (−4, 3)

  • (−∞, −4) ∪ (3, ∞)

  • none of these

MCQ

उत्तर

(−1, 3)

The given equation of the curve is \[x^2 + y^2 = 25\].

Since (λ, λ + 1) lies inside the region bounded by the curve

\[x^2 + y^2 = 25\] and the y-axis, we have:

\[\lambda^2 + \left( \lambda + 1 \right)^2 < 25\],
\[\text { provided } \lambda + 1 > 0\]

\[\Rightarrow \lambda^2 + \lambda^2 + 1 + 2\lambda < 25, \lambda > - 1\]

\[ \Rightarrow 2 \lambda^2 + 2\lambda - 24 < 0, \lambda > - 1\]

\[ \Rightarrow \lambda^2 + \lambda - 12 < 0, \lambda > - 1\]

\[ \Rightarrow \left( \lambda - 3 \right)\left( \lambda + 4 \right) < 0, \lambda > - 1\]

\[ \Rightarrow - 4 < \lambda < 3, \lambda > - 1\]

\[ \Rightarrow \lambda \in \left( - 1, 3 \right)\]

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.6 | Q 10 | पृष्ठ ३९

संबंधित प्रश्न

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (0, −1) and radius 1.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______. 


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×