हिंदी

Find the Equation of the Circle Which Circumscribes the Triangle Formed by the Lines X + Y + 3 = 0, X − Y + 1 = 0 and X = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3

उत्तर

In \[∆\]

(i) Let AB represent the line x + + 3 = 0.       ...(1)
Let BC represent the line x − y + 1 = 0.           ...(2)
Let CA represent the line x = 3.                       ...(3)
Intersection point of (1) and (3) is  \[\left( 3, - 6 \right)\]
Intersection point of (1) and (2) is (−2, −1).
Intersection point of (2) and (3) is (3, 4).
Therefore, the coordinates of A, B and C are  \[\left( 3, - 6 \right)\], (−2, −1) and (3, 4), respectively.

Let the equation of the circumcircle be  \[x^2 + y^2 + 2gx + 2fy + c = 0\]

It passes through A, B and C.

∴ \[45 + 6g - 12f + c = 0\]

\[5 - 4g - 2f + c = 0\]
\[25 + 6g + 8f + c = 0\]
\[\therefore g = - 3, f = 1, c = - 15\]

Hence, the required equation of the circumcircle is 

\[x^2 + y^2 - 6x + 2y - 15 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.2 | Q 7.1 | पृष्ठ ३२

संबंधित प्रश्न

Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of a circle which passes through (3, 6) and touches the axes is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×