हिंदी

Find the Equations of the Circles Which Pass Through the Origin and Cut off Equal Chords of √ 2 Units from the Lines Y = X and Y = − X. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.

उत्तर

Suppose

\[a = \sqrt{2}\] From the figure, we see that there will be four circles that pass through the origin and cut off equal chords of length a from the straight lines \[y = \pm x\]
AB, BC, CD and DA are the diameters of the four circles.
Also,
\[C_1 A = \frac{a}{\sqrt{2}} = O C_1\] Thus, the coordinates of A are  \[\left( \frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}} \right)\]
In the same way, we can find the coordinates of BC and D as
\[\left( \frac{- a}{\sqrt{2}}, \frac{a}{\sqrt{2}} \right),\] \[\left( \frac{- a}{\sqrt{2}}, \frac{- a}{\sqrt{2}} \right)\] and
\[\left( \frac{a}{\sqrt{2}}, \frac{- a}{\sqrt{2}} \right)\], respectively.
The equation of the circle with AD as the diameter is
\[\left( x - \frac{a}{\sqrt{2}} \right)\left( x - \frac{a}{\sqrt{2}} \right) + \left( y - \frac{a}{\sqrt{2}} \right)\left( y + \frac{a}{\sqrt{2}} \right) = 0\], which can be rewritten as
\[x^2 + y^2 - \sqrt{2}ax = 0\] , i.e. \[x^2 + y^2 - 2x = 0\]
Similarly, the equations of the circles with BCCD and AB as the diameters are \[x^2 + y^2 + 2x = 0\]
\[x^2 + y^2 + 2y = 0\]  and  \[x^2 + y^2 - 2y = 0\], respectively.
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.3 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.3 | Q 12 | पृष्ठ ३८

संबंधित प्रश्न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (aa) and radius \[\sqrt{2}\]a.


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×