Advertisements
Advertisements
प्रश्न
Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).
उत्तर
Let (h, k) be the centre of a circle with radius a.
Thus, its equation will be \[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]
Given:
h = 1, k = 2
∴ Equation of the circle = \[\left( x - 1 \right)^2 + \left( y - 2 \right)^2 = a^2\]
Also, equation (1) passes through (4, 6).
∴\[\left( 4 - 1 \right)^2 + \left( 6 - 2 \right)^2 = a^2\]
\[\Rightarrow 9 + 16 = a^2 \]
\[ \Rightarrow a = 5 \left( \because a > 0 \right)\]
Substituting the value of a in equation (1):
\[ \Rightarrow x^2 - 2x + y^2 - 4y = 20\]
\[ \Rightarrow x^2 + y^2 - 2x - 4y - 20 = 0\]
Thus, the required equation of the circle is
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (−2, 3) and radius 4.
Find the equation of the circle with:
Centre (a, b) and radius\[\sqrt{a^2 + b^2}\]
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
x2 + y2 − x + 2y − 3 = 0.
If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.
Find the equation of a circle
which touches both the axes and passes through the point (2, 1).
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.
Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.
Find the equation of the circle which circumscribes the triangle formed by the lines x + y + 3 = 0, x − y + 1 = 0 and x = 3
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
Prove that the centres of the three circles x2 + y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.
If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.
Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.
ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.
Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).
If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are
If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is
If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval
If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to
If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is
The equation of a circle with radius 5 and touching both the coordinate axes is
The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then
The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.
Equation of a circle which passes through (3, 6) and touches the axes is ______.