हिंदी

Find the Equation of the Circle With:Centre (A Cos α, a Sin α) and Radius A. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.

उत्तर

 Here, h = \[a\cos\alpha\] , = \[a\cos\alpha\]

\[a\cos\alpha\]  and radius = a
∴ Required equation of the circle:
\[\left( x - a\cos\alpha \right)^2 + \left( y - a\sin\alpha \right)^2 = \left( a \right)^2\]

\[\Rightarrow x^2 + a^2 \cos^2 \alpha - 2ax\cos\alpha + y^2 + a^2 \sin^2 \alpha - 2ay\sin\alpha = a^2 \]

\[ \Rightarrow x^2 + a^2 \left( \sin^2 \alpha + \cos^2 \alpha \right) - 2ax\cos\alpha + y^2 - 2ay\sin\alpha = a^2 \]

\[ \Rightarrow x^2 + a^2 - 2ax\cos\alpha + y^2 - 2ay\sin\alpha = a^2 \]

\[ \Rightarrow x^2 + y^2 - 2ax\cos\alpha - 2ay\sin\alpha = 0\]

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.1 | Q 1.4 | पृष्ठ २१

संबंधित प्रश्न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the lines 2x  3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.


The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×