हिंदी

The Circle X2 + Y2 + 2gx + 2fy + C = 0 Does Not Intersect X-axis, If - Mathematics

Advertisements
Advertisements

प्रश्न

The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if

विकल्प

  • g2 < c

  • g2 > c

  • g2 > 2c

  • none of these

MCQ

उत्तर

g2 < c

Given:
x2 + y2 + 2gx + 2fy + c = 0   ...(1)
The given circle intersects the x-axis.
The equation of circle becomes x2 + 2gx + c = 0.    ...(2)
Solving equation (2):
∴  Discriminant, D = \[\sqrt{4 g^2 - 4c} \geq 0\]

\[\Rightarrow 4 g^2 - 4c \geq 0\]

\[ \Rightarrow g^2 - c \geq 0\]

\[ \Rightarrow g^2 \geq c\]

Hence, if \[g^2 < c\],then the given circle will not intersect the x-axis.

shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.6 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.6 | Q 17 | पृष्ठ ४०

संबंधित प्रश्न

Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is


If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of a circle with radius 5 and touching both the coordinate axes is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×