Advertisements
Advertisements
प्रश्न
If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then
विकल्प
\[\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}\]
\[\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}\]
a + b = 2c
\[\frac{1}{a} + \frac{1}{b} = \frac{2}{c}\]
उत्तर
\[\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}\]
Given:
x2 + y2 + 2ax + c = 0 ...(1)
And, x2 + y2 + 2by + c = 0 ...(2)
For circle (1), we have:
Centre = \[\left( - a, 0 \right)\] = C1
For circle (2), we have:
Centre = \[\left( 0, - b \right)\] = C2
Let the circles intersect at point P.
∴ Coordinates of P = Mid point of C1C2
⇒ Coordinates of P = \[\left( \frac{- a + 0}{2}, \frac{0 - b}{2} \right) = \left( \frac{- a}{2}, \frac{- b}{2} \right)\]
Now, we have:
\[P C_1 = \text { radius of } \left( 1 \right)\]
\[ \Rightarrow \sqrt{\left( - a + \frac{a}{2} \right)^2 + \left( 0 - \frac{b}{2} \right)^2} = \sqrt{a^2 - c}\]
\[ \Rightarrow \frac{a}{4}^2 + \frac{b}{4}^2 = a^2 - c . . . \left( 3 \right)\]
\[\text { Also, radius of circle } \left( 1 \right) = \text { radius of circle } \left( 2 \right)\]
\[ \Rightarrow \sqrt{a^2 - c} = \sqrt{b^2 - c}\]
\[ \Rightarrow a^2 = b^2 . . . \left( 4 \right)\]
From (3) and (4), we have:
\[\frac{a^2}{2} = a^2 - c\]
\[ \Rightarrow \frac{a^2}{2} = c\]
\[ \Rightarrow \frac{2}{a^2} = \frac{1}{c}\]
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{a^2} = \frac{1}{c}\]
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (0, −1) and radius 1.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
x2 + y2 − x + 2y − 3 = 0.
Find the equation of the circle whose centre lies on the positive direction of y - axis at a distance 6 from the origin and whose radius is 4.
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.
Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.
Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.
Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and y - axes.
ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.
Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.
Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).
If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to
The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is
The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if
The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
Equation of the circle through origin which cuts intercepts of length a and b on axes is
The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.