Advertisements
Advertisements
Question
If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then
Options
\[\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}\]
\[\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}\]
a + b = 2c
\[\frac{1}{a} + \frac{1}{b} = \frac{2}{c}\]
Solution
\[\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}\]
Given:
x2 + y2 + 2ax + c = 0 ...(1)
And, x2 + y2 + 2by + c = 0 ...(2)
For circle (1), we have:
Centre = \[\left( - a, 0 \right)\] = C1
For circle (2), we have:
Centre = \[\left( 0, - b \right)\] = C2
Let the circles intersect at point P.
∴ Coordinates of P = Mid point of C1C2
⇒ Coordinates of P = \[\left( \frac{- a + 0}{2}, \frac{0 - b}{2} \right) = \left( \frac{- a}{2}, \frac{- b}{2} \right)\]
Now, we have:
\[P C_1 = \text { radius of } \left( 1 \right)\]
\[ \Rightarrow \sqrt{\left( - a + \frac{a}{2} \right)^2 + \left( 0 - \frac{b}{2} \right)^2} = \sqrt{a^2 - c}\]
\[ \Rightarrow \frac{a}{4}^2 + \frac{b}{4}^2 = a^2 - c . . . \left( 3 \right)\]
\[\text { Also, radius of circle } \left( 1 \right) = \text { radius of circle } \left( 2 \right)\]
\[ \Rightarrow \sqrt{a^2 - c} = \sqrt{b^2 - c}\]
\[ \Rightarrow a^2 = b^2 . . . \left( 4 \right)\]
From (3) and (4), we have:
\[\frac{a^2}{2} = a^2 - c\]
\[ \Rightarrow \frac{a^2}{2} = c\]
\[ \Rightarrow \frac{2}{a^2} = \frac{1}{c}\]
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{a^2} = \frac{1}{c}\]
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the circle with:
Centre (−2, 3) and radius 4.
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the centre and radius of each of the following circles:
x2 + y2 − 4x + 6y = 5
Find the centre and radius of each of the following circles:
x2 + y2 − x + 2y − 3 = 0.
Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.
Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.
Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.
If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.
Find the equation of the circle passing through the points:
(5, −8), (−2, 9) and (2, 1)
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.
Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.
If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.
Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.
The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.
Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.
Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.
The equation x2 + y2 + 2x − 4y + 5 = 0 represents
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______.
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is
If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval
If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is
The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
Equation of the circle through origin which cuts intercepts of length a and b on axes is
Equation of a circle which passes through (3, 6) and touches the axes is ______.