Advertisements
Advertisements
Question
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
Options
14
18
16
none of these
Solution
According to the question:
\[\sqrt{\left( \frac{- \lambda}{2} \right)^2 + \left( \frac{\lambda - 1}{2} \right)^2 - 5} \leq 5\]
\[ \Rightarrow \left( \frac{- \lambda}{2} \right)^2 + \left( \frac{\lambda - 1}{2} \right)^2 \leq 30\]
\[\lambda^2 + \left( \lambda - 1 \right)^2 \leq 120\]
\[ \Rightarrow 2 \lambda^2 - 2\lambda - 119 \leq 0\]
Using quadratic formula:
\[ \Rightarrow \lambda = \frac{2 \pm \sqrt{2^2 - 4\left( 2 \right)\left( - 119 \right)}}{2\left( 2 \right)}\]
\[ \Rightarrow \lambda = \frac{2 \pm \sqrt{956}}{4}\]
\[ \Rightarrow \lambda = \frac{1 \pm \sqrt{239}}{2}\]
\[ \Rightarrow \lambda = - 7 . 23, 8 . 23\]
\[ \Rightarrow - 7 . 23 \leq \lambda \leq 8 . 23\]
\[ \Rightarrow \lambda = - 7, - 6, - 5, - 4, - 3, - 2, - 1, 0, 1, 2, 3, 4, 5, 6, 7, 8 \left( If \lambda \in \mathbb{Z} \right)\]
Thus, the number of integral values of
APPEARS IN
RELATED QUESTIONS
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the centre and radius of each of the following circles:
x2 + y2 − 4x + 6y = 5
If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.
Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.
A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.
Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.
If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.
If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
Show that the point (x, y) given by \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.
The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.
One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 + 6x − 8y − 24 = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.
Find the equation of the circle which circumscribes the triangle formed by the lines
x + y = 2, 3x − 4y = 6 and x − y = 0.
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.
If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.
The abscissae of the two points A and B are the roots of the equation x2 + 2ax − b2 = 0 and their ordinates are the roots of the equation x2 + 2px − q2 = 0. Find the equation of the circle with AB as diameter. Also, find its radius.
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.
The equation x2 + y2 + 2x − 4y + 5 = 0 represents
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is
If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval
The equation of a circle with radius 5 and touching both the coordinate axes is
The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are
If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then
Equation of a circle which passes through (3, 6) and touches the axes is ______.
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.