English

Find the Equation of the Circle Passing Through the Points: (5, 7), (8, 1) and (1, 3) - Mathematics

Advertisements
Advertisements

Question

Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)

Solution

Let the required circle be

\[x^2 + y^2 + 2gx + 2fy + c = 0\]  ...(1)
It passes through (5, 7), (8, 1) and (1, 3).
Substituting the coordinates of these points in equation (1):
\[74 + 10g + 14f + c = 0\] ...(2)
\[65 + 16g + 2f + c = 0\] ...(3)
\[10 + 2g + 6f + c = 0\]...(4)
Simplifying (2), (3) and (4):
\[g = \frac{- 29}{6}, f = \frac{- 19}{6}, c = \frac{56}{3}\]
Equation of the required circle:
\[x^2 + y^2 - \frac{29x}{3} - \frac{19y}{3} + \frac{56}{3} = 0\]
\[\Rightarrow\] \[3\left( x^2 + y^2 \right) - 29x - 19y + 56 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.2 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.2 | Q 2.1 | Page 32

RELATED QUESTIONS

Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 and whose centre is the point of intersection of the lines x + y + 1 = 0 and x − 2y + 4 = 0.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


If the lines 2x  3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


The equation of a circle with radius 5 and touching both the coordinate axes is


The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if


The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×