English

Show that the Point (X, Y) Given by X = 2 a T 1 + T 2 and Y = a ( 1 − T 2 1 + T 2 ) Lies on a Circle for All Real Values of T Such that − 1 ≤ T ≤ 1 Where a is Any Given Real Number. - Mathematics

Advertisements
Advertisements

Question

Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 

Solution

Squaring and adding \[x = \frac{2at}{1 + t^2}\] and

\[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] , we get
\[x^2 + y^2 = \left( \frac{2at}{1 + t^2} \right)^2 + a^2 \left( \frac{1 - t^2}{1 + t^2} \right)^2 \]
\[ \Rightarrow x^2 + y^2 = \frac{4 a^2 t^2 + a^2 - 2 a^2 t^2 + a^2 t^4}{\left( 1 + t^2 \right)^2}\]
\[ \Rightarrow x^2 + y^2 = \frac{a^2 + 2 a^2 t^2 + a^2 t^4}{\left( 1 + t^2 \right)^2}\]
\[ \Rightarrow x^2 + y^2 = a^2 \frac{\left( 1 + t^2 \right)^2}{\left( 1 + t^2 \right)^2}\]
\[ \Rightarrow x^2 + y^2 = a^2 \]
Since, the above equation represents the equation of a circle, hence points (x, y) lies on the circle.
shaalaa.com
Circle - Standard Equation of a Circle
  Is there an error in this question or solution?
Chapter 24: The circle - Exercise 24.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 24 The circle
Exercise 24.1 | Q 18 | Page 21

RELATED QUESTIONS

Find the equation of the circle with:

Centre (−2, 3) and radius 4.


Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the equation of the circle with:

Centre (a cos α, a sin α) and radius a.


Find the centre and radius of each of the following circles:

x2 + y2 − 4x + 6y = 5


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle circumscribing the rectangle whose sides are x − 3y = 4, 3x + y = 22, x − 3y = 14 and 3x + y = 62.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to


The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are


If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =


Equation of the circle through origin which cuts intercepts of length a and b on axes is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×