हिंदी

Show that the Point (X, Y) Given by X = 2 a T 1 + T 2 and Y = a ( 1 − T 2 1 + T 2 ) Lies on a Circle for All Real Values of T Such that − 1 ≤ T ≤ 1 Where a is Any Given Real Number. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 

उत्तर

Squaring and adding \[x = \frac{2at}{1 + t^2}\] and

\[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] , we get
\[x^2 + y^2 = \left( \frac{2at}{1 + t^2} \right)^2 + a^2 \left( \frac{1 - t^2}{1 + t^2} \right)^2 \]
\[ \Rightarrow x^2 + y^2 = \frac{4 a^2 t^2 + a^2 - 2 a^2 t^2 + a^2 t^4}{\left( 1 + t^2 \right)^2}\]
\[ \Rightarrow x^2 + y^2 = \frac{a^2 + 2 a^2 t^2 + a^2 t^4}{\left( 1 + t^2 \right)^2}\]
\[ \Rightarrow x^2 + y^2 = a^2 \frac{\left( 1 + t^2 \right)^2}{\left( 1 + t^2 \right)^2}\]
\[ \Rightarrow x^2 + y^2 = a^2 \]
Since, the above equation represents the equation of a circle, hence points (x, y) lies on the circle.
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.1 | Q 18 | पृष्ठ २१

संबंधित प्रश्न

Find the equation of the circle with:

Centre (ab) and radius\[\sqrt{a^2 + b^2}\]


Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

x2 + y2 − x + 2y − 3 = 0.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7


Find the coordinates of the centre and radius of the following circle:

1/2 (x2 + y2) + x cos θ + y sin θ − 4 = 0


Find the coordinates of the centre and radius of each of the following circles:  x2 y2 − ax − by = 0


Find the equation of the circle passing through the points:

(5, 7), (8, 1) and (1, 3)


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Prove that the centres of the three circles x2 y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.


Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


The equation x2 + y2 + 2x − 4y + 5 = 0 represents


The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is


If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval


Equation of the circle through origin which cuts intercepts of length a and b on axes is


If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×