हिंदी

Find the Equation of the Circle Which Has Its Centre at the Point (3, 4) and Touches the Straight Line 5x + 12y − 1 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.

उत्तर

It is given that the centre is at the point (3, 4).
Let the equation of the circle be

\[\left( x - h \right)^2 + \left( y - k \right)^2 = a^2\]

∴ Equation of the required circle =

\[\left( x - 3 \right)^2 + \left( y - 4 \right)^2 = a^2\]...(1)
Also, the circle touches the straight line 5x + 12y − 1 = 0.
\[\therefore a = \left| \frac{5\left( 3 \right) + 12\left( 4 \right) - 1}{\sqrt{5^2 + {12}^2}} \right| = \left| \frac{62}{13} \right|\]
\[ \Rightarrow a^2 = \left| \frac{5\left( 3 \right) + 12\left( 4 \right) - 1}{13} \right| = \frac{3844}{169}\]
So, from equation (1), we have:
\[\left( x - 3 \right)^2 + \left( y - 4 \right)^2 = \frac{3844}{169}\]
\[\Rightarrow x^2 + y^2 - 6x - 8y = \frac{3844}{169} - 25\]
\[\Rightarrow 169\left( x^2 + y^2 - 6x - 8y \right) + 381 = 0\]
Hence, the required equation of the circle is
\[169\left( x^2 + y^2 - 6x - 8y \right) + 381 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: The circle - Exercise 24.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 24 The circle
Exercise 24.1 | Q 8 | पृष्ठ २१

संबंधित प्रश्न

Find the centre and radius of each of the following circles:

 (x − 1)2 + y2 = 4


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the equation of the circle whose centre lies on the positive direction of - axis at a distance 6 from the origin and whose radius is 4.


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.


Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.


Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.


A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.


Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.


Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2+ 5y = 18.


Show that the point (xy) given by  \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\]  lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.

 


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.


If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the equation of the circle passing through the points:

 (5, −8), (−2, 9) and (2, 1)


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Find the equation of the circle which circumscribes the triangle formed by the lines

 x + y = 2, 3x − 4y = 6 and x − y = 0.


Find the equation of the circle which circumscribes the triangle formed by the lines  y = x + 2, 3y = 4x and 2y = 3x.


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.


Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.


Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).


The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is


The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is


If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are


Equation of the circle through origin which cuts intercepts of length a and b on axes is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×