Advertisements
Advertisements
प्रश्न
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
विकल्प
x2 + y2 − 6x −6y + 9 = 0
4 (x2 + y2 − x − y) + 1 = 0
4 (x2 + y2 + x + y) + 1 = 0
none of these
उत्तर
4 (x2 + y2 − x − y) + 1 = 0
The line 4x + 3y = 6 cuts the coordinate axes at \[\left( \frac{3}{2}, 0 \right) \text { and } \left( 0, 2 \right)\]
The coordinates of the incentre is
\[\left( \frac{0 + 0 + 3}{6}, \frac{0 + 3 + 0}{6} \right)\]
\[ = \left( \frac{1}{2}, \frac{1}{2} \right)\]
The equation of the incircle:
\[\left( x - \frac{1}{2} \right)^2 + \left( y - \frac{1}{2} \right)^2 = a^2\]
Also, radius of the incircle = \[\frac{\sqrt{s\left( s - a \right)\left( s - b \right)\left( s - c \right)}}{s}\]
Here, \[s = \frac{a + b + c}{2} = \frac{\frac{5}{2} + \frac{3}{2} + 2}{2} = 3\]
∴ Radius of the incircle = \[\frac{\sqrt{3\left( 3 - a \right)\left( 3 - b \right)\left( 3 - c \right)}}{3}\]
\[= \frac{\sqrt{3\left( 3 - \frac{5}{2} \right)\left( 3 - \frac{3}{2} \right)\left( 3 - 2 \right)}}{3}\]
\[ = \frac{\sqrt{3\left( \frac{1}{2} \right)\left( \frac{3}{2} \right)}}{3}\]
\[ = \frac{1}{2}\]
The equation of circle: \[\left( x - \frac{1}{2} \right)^2 + \left( y - \frac{1}{2} \right)^2 = \frac{1}{4}\]
\[\Rightarrow 4\left( x^2 + y^2 - x - y \right) + 1 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the centre and radius of each of the following circles:
(x + 5)2 + (y + 1)2 = 9
Find the equation of a circle
which touches both the axes and passes through the point (2, 1).
Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.
Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.
A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.
A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equations of its images with respect to the line mirrors x = 0 and y = 0.
Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.
If the line y = \[\sqrt{3}\] x + k touches the circle x2 + y2 = 16, then find the value of k.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.
Find the equation of the circle passing through the points:
(5, −8), (−2, 9) and (2, 1)
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic.
Find the equation of the circle which circumscribes the triangle formed by the lines
x + y = 2, 3x − 4y = 6 and x − y = 0.
Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.
Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.
Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.
Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.
Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and y - axes.
The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.
If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.
If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are
The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is
If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to
If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is
The equation of a circle with radius 5 and touching both the coordinate axes is
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =
If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are
If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then
The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.