Advertisements
Advertisements
प्रश्न
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
पर्याय
x2 + y2 − 6x −6y + 9 = 0
4 (x2 + y2 − x − y) + 1 = 0
4 (x2 + y2 + x + y) + 1 = 0
none of these
उत्तर
4 (x2 + y2 − x − y) + 1 = 0
The line 4x + 3y = 6 cuts the coordinate axes at \[\left( \frac{3}{2}, 0 \right) \text { and } \left( 0, 2 \right)\]
The coordinates of the incentre is
\[\left( \frac{0 + 0 + 3}{6}, \frac{0 + 3 + 0}{6} \right)\]
\[ = \left( \frac{1}{2}, \frac{1}{2} \right)\]
The equation of the incircle:
\[\left( x - \frac{1}{2} \right)^2 + \left( y - \frac{1}{2} \right)^2 = a^2\]
Also, radius of the incircle = \[\frac{\sqrt{s\left( s - a \right)\left( s - b \right)\left( s - c \right)}}{s}\]
Here, \[s = \frac{a + b + c}{2} = \frac{\frac{5}{2} + \frac{3}{2} + 2}{2} = 3\]
∴ Radius of the incircle = \[\frac{\sqrt{3\left( 3 - a \right)\left( 3 - b \right)\left( 3 - c \right)}}{3}\]
\[= \frac{\sqrt{3\left( 3 - \frac{5}{2} \right)\left( 3 - \frac{3}{2} \right)\left( 3 - 2 \right)}}{3}\]
\[ = \frac{\sqrt{3\left( \frac{1}{2} \right)\left( \frac{3}{2} \right)}}{3}\]
\[ = \frac{1}{2}\]
The equation of circle: \[\left( x - \frac{1}{2} \right)^2 + \left( y - \frac{1}{2} \right)^2 = \frac{1}{4}\]
\[\Rightarrow 4\left( x^2 + y^2 - x - y \right) + 1 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (a, b) and radius\[\sqrt{a^2 + b^2}\]
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).
Find the equation of a circle
passing through the origin, radius 17 and ordinate of the centre is −15.
Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.
Show that the point (x, y) given by \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.
If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the equation of the circle passing through the points:
(0, 0), (−2, 1) and (−3, 2)
Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on the line x − 4y = 1.
Prove that the centres of the three circles x2 + y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.
Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.
The sides of a square are x = 6, x = 9, y = 3 and y = 6. Find the equation of a circle drawn on the diagonal of the square as its diameter.
The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.
Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.
Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.
Write the equation of the unit circle concentric with x2 + y2 − 8x + 4y − 8 = 0.
If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are
If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______.
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
If the point (2, k) lies outside the circles x2 + y2 + x − 2y − 14 = 0 and x2 + y2 = 13 then k lies in the interval
If the point (λ, λ + 1) lies inside the region bounded by the curve \[x = \sqrt{25 - y^2}\] and y-axis, then λ belongs to the interval
If the circle x2 + y2 + 2ax + 8y + 16 = 0 touches x-axis, then the value of a is
The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is
The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
Equation of the circle through origin which cuts intercepts of length a and b on axes is
If the circles x2 + y2 + 2ax + c = 0 and x2 + y2 + 2by + c = 0 touch each other, then
The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.