Advertisements
Advertisements
प्रश्न
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______.
पर्याय
(3, −1)
(3, 1)
(−3, 1)
none of these
उत्तर
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is (−3, 1).
Explanation:
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then we have:
Coefficient of x2 = Coefficient of y2
⇒ \[4a - 3 = a\]
⇒ a = 1
∴ Equation of the circle
= \[x^2 + y^2 + 6x - 2y + 2 = 0\]
Thus, the coordinates of the centre is \[\left( - 3, 1 \right)\].
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (0, −1) and radius 1.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
Find the centre and radius of each of the following circles:
x2 + y2 − 4x + 6y = 5
Find the centre and radius of each of the following circles:
x2 + y2 − x + 2y − 3 = 0.
Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).
If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.
Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
Find the equations of the circles passing through two points on Y-axis at distances 3 from the origin and having radius 5.
Find the equation of the circle having (1, −2) as its centre and passing through the intersection of the lines 3x + y = 14 and 2x + 5y = 18.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
Show that the point (x, y) given by \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.
The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.
If the line 2x − y + 1 = 0 touches the circle at the point (2, 5) and the centre of the circle lies on the line x + y − 9 = 0. Find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 + 6x − 8y − 24 = 0
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
Prove that the centres of the three circles x2 + y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.
Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.
Find the equation of the circle concentric with x2 + y2 − 4x − 6y − 3 = 0 and which touches the y-axis.
Find the equation of the circle passing through the origin and the points where the line 3x + 4y = 12 meets the axes of coordinates.
Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and y - axes.
Find the equations of the circles which pass through the origin and cut off equal chords of \[\sqrt{2}\] units from the lines y = x and y = − x.
The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines x2 − y2 −2x + 4y − 3 = 0, is
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
If the circles x2 + y2 = 9 and x2 + y2 + 8y + c = 0 touch each other, then c is equal to
The equation of a circle with radius 5 and touching both the coordinate axes is
The equation of the circle passing through the origin which cuts off intercept of length 6 and 8 from the axes is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y), then the values of x and y are
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
Equation of the diameter of the circle x2 + y2 − 2x + 4y = 0 which passes through the origin is
Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.