Advertisements
Advertisements
प्रश्न
Find the equation of the circle which touches the axes and whose centre lies on x − 2y = 3.
उत्तर
If the circle lies in the third quadrant, then its centre will be (−a, −a).
The centre lies on x − 2y = 3.
∴\[- a + 2a = 3 \Rightarrow a = 3\]
∴ Required equation of the circle = \[\left( x + 3 \right)^2 + \left( y + 3 \right)^2 = 9\]
=\[x^2 + y^2 + 6x + 6y + 9 = 0\]
If the circle lies in the fourth quadrant, then its centre will be (a, −a),
∴\[a + 2a = 3 \Rightarrow a = 1\]
∴ Required equation of the circle =
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (−2, 3) and radius 4.
Find the equation of the circle with:
Centre (a, b) and radius\[\sqrt{a^2 + b^2}\]
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the equation of a circle
which touches both the axes at a distance of 6 units from the origin.
Find the equation of a circle which touches x-axis at a distance 5 from the origin and radius 6 units.
A circle whose centre is the point of intersection of the lines 2x − 3y + 4 = 0 and 3x + 4y− 5 = 0 passes through the origin. Find its equation.
Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
Show that the point (x, y) given by \[x = \frac{2at}{1 + t^2}\] and \[y = a\left( \frac{1 - t^2}{1 + t^2} \right)\] lies on a circle for all real values of t such that \[- 1 \leq t \leq 1\] where a is any given real number.
One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.
Prove that the centres of the three circles x2 + y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.
Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.
Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.
Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and y - axes.
Find the equation of the circle whose diameter is the line segment joining (−4, 3) and (12, −1). Find also the intercept made by it on y-axis.
ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.
The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.
Write the area of the circle passing through (−2, 6) and having its centre at (1, 2).
If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is
The equation x2 + y2 + 2x − 4y + 5 = 0 represents
If the equation (4a − 3) x2 + ay2 + 6x − 2y + 2 = 0 represents a circle, then its centre is ______.
If the centroid of an equilateral triangle is (1, 1) and its one vertex is (−1, 2), then the equation of its circumcircle is
The equation of a circle with radius 5 and touching both the coordinate axes is
The circle x2 + y2 + 2gx + 2fy + c = 0 does not intersect x-axis, if
The area of an equilateral triangle inscribed in the circle x2 + y2 − 6x − 8y − 25 = 0 is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
Equation of the circle through origin which cuts intercepts of length a and b on axes is
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.