मराठी

The Line 2x − Y + 6 = 0 Meets the Circle X2 + Y2 − 2y − 9 = 0 at a and B. Find the Equation of the Circle on Ab as Diameter. - Mathematics

Advertisements
Advertisements

प्रश्न

The line 2x − y + 6 = 0 meets the circle x2 + y2 − 2y − 9 = 0 at A and B. Find the equation of the circle on AB as diameter.

उत्तर

The equation of the line can be rewritten as \[x = \frac{y - 6}{2}\] . 

Substituting the value of x in the equation of the circle, we get: \[\left( \frac{y - 6}{2} \right)^2 + y^2 - 2y - 9 = 0\]

\[\Rightarrow \left( y - 6 \right)^2 + 4 y^2 - 8y - 36 = 0\]
\[ \Rightarrow y^2 + 36 - 12y + 4 y^2 - 8y - 36 = 0\]
\[ \Rightarrow 5 y^2 - 20y = 0\]
\[ \Rightarrow y^2 - 4y = 0\]
\[ \Rightarrow y\left( y - 4 \right) = 0\]
\[ \Rightarrow y = 0, 4\]

At y = 0, x = −3
At y = 4, x = −1
Therefore, the coordinates of A and B are

\[\left( - 1, 4 \right) \text{and} \left( - 3, 0 \right)\]

∴ Equation of the circle with AB as its diameter:

\[\left( x + 1 \right)\left( x + 3 \right) + \left( y - 4 \right)\left( y - 0 \right) = 0\]
\[\Rightarrow x^2 + 4x + y^2 - 4y + 3 = 0\]
shaalaa.com
Circle - Standard Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: The circle - Exercise 24.3 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 24 The circle
Exercise 24.3 | Q 10 | पृष्ठ ३७

संबंधित प्रश्‍न

Find the equation of the circle with:

Centre (0, −1) and radius 1.


Find the centre and radius of each of the following circles:

(x + 5)2 + (y + 1)2 = 9


Find the equation of the circle whose centre is (1, 2) and which passes through the point (4, 6).


If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.


Find the equation of a circle
which touches both the axes and passes through the point (2, 1).


Find the equation of the circle which has its centre at the point (3, 4) and touches the straight line 5x + 12y − 1 = 0.


Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.


If the lines 2x  3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 square units, then obtain the equation of the circle.


If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of  the circle.


The circle x2 + y2 − 2x − 2y + 1 = 0 is rolled along the positive direction of x-axis and makes one complete roll. Find its equation in new-position.


Find the coordinates of the centre and radius of each of the following circles:  x2 + y2 + 6x − 8y − 24 = 0


Find the equation of the circle passing through the points:

 (0, 0), (−2, 1) and (−3, 2)


Show that the points (5, 5), (6, 4), (−2, 4) and (7, 1) all lie on a circle, and find its equation, centre and radius.


Find the equation of the circle which circumscribes the triangle formed by the lines x + + 3 = 0, x − y + 1 = 0 and x = 3


Find the equation of the circle which circumscribes the triangle formed by the lines 2x + y − 3 = 0, x + y − 1 = 0 and 3x + 2y − 5 = 0


Prove that the radii of the circles x2 + y2 = 1, x2 + y2 − 2x − 6y − 6 = 0 and x2 + y2 − 4x − 12y − 9 = 0 are in A.P.


Find the equation of the circle concentric with the circle x2 + y2 − 6x + 12y + 15 = 0 and double of its area.


Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.


If a circle passes through the point (0, 0),(a, 0),(0, b) then find the coordinates of its centre.


Find the equation of the circle, the end points of whose diameter are (2, −3) and (−2, 4). Find its centre and radius.


Find the equation of the circle the end points of whose diameter are the centres of the circles x2 + y2 + 6x − 14y − 1 = 0 and x2 + y2 − 4x + 10y − 2 = 0.


Find the equation of the circle which passes through the origin and cuts off intercepts aand b respectively from x and - axes.


Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.


Write the length of the intercept made by the circle x2 + y2 + 2x − 4y − 5 = 0 on y-axis.


Write the coordinates of the centre of the circle passing through (0, 0), (4, 0) and (0, −6).


If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.


If the equation of a circle is λx2 + (2λ − 3) y2 − 4x + 6y − 1 = 0, then the coordinates of centre are


The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is


If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =


Equation of the circle through origin which cuts intercepts of length a and b on axes is


Equation of a circle which passes through (3, 6) and touches the axes is ______.


Equation of the circle with centre on the y-axis and passing through the origin and the point (2, 3) is ______.


The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×