Advertisements
Advertisements
प्रश्न
Find the equation to the circle which passes through the points (1, 1) (2, 2) and whose radius is 1. Show that there are two such circles.
उत्तर
It passes through (1, 1) and (2, 2).
∴ \[2g + 2f + c = - 2\]...(1)
And,
\[ \Rightarrow g^2 + f^2 = 1 + c = 5\]
\[ \Rightarrow \left( g + f \right)^2 - 2gf = 5\]
\[ \Rightarrow gf = 2\]
Hence, there are two such circles.
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with:
Centre (−2, 3) and radius 4.
Find the equation of the circle with:
Centre (a cos α, a sin α) and radius a.
Find the equation of the circle with:
Centre (a, a) and radius \[\sqrt{2}\]a.
Find the centre and radius of each of the following circles:
(x − 1)2 + y2 = 4
If the equations of two diameters of a circle are 2x + y = 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.
Find the equations of the circles touching y-axis at (0, 3) and making an intercept of 8 units on the X-axis.
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle.
One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If the coordinates of A and B are (−3, 4) and (5, 4) respectively, find the equation of the circle.
Find the coordinates of the centre and radius of each of the following circles: 2x2 + 2y2 − 3x + 5y = 7
Find the coordinates of the centre and radius of each of the following circles: x2 + y2 − ax − by = 0
Find the equation of the circle passing through the points:
(5, 7), (8, 1) and (1, 3)
Find the equation of the circle which passes through (3, −2), (−2, 0) and has its centre on the line 2x − y = 3.
Find the equation of the circle which circumscribes the triangle formed by the lines x + y + 3 = 0, x − y + 1 = 0 and x = 3
Find the equation of the circle which circumscribes the triangle formed by the lines
x + y = 2, 3x − 4y = 6 and x − y = 0.
Find the equation of the circle which circumscribes the triangle formed by the lines y = x + 2, 3y = 4x and 2y = 3x.
Prove that the centres of the three circles x2 + y2 − 4x − 6y − 12 = 0, x2 + y2 + 2x + 4y − 10 = 0 and x2 + y2 − 10x − 16y − 1 = 0 are collinear.
Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the x-axis and y-axis respectively.
Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0.
ABCD is a square whose side is a; taking AB and AD as axes, prove that the equation of the circle circumscribing the square is x2 + y2 − a (x + y) = 0.
Find the equation of the circle which circumscribes the triangle formed by the lines x = 0, y = 0 and lx + my = 1.
If the abscissae and ordinates of two points P and Q are roots of the equations x2 + 2ax − b2 = 0 and x2 + 2px − q2 = 0 respectively, then write the equation of the circle with PQ as diameter.
If the radius of the circle x2 + y2 + ax + (1 − a) y + 5 = 0 does not exceed 5, write the number of integral values a.
If 2x2 + λxy + 2y2 + (λ − 4) x + 6y − 5 = 0 is the equation of a circle, then its radius is
The radius of the circle represented by the equation 3x2 + 3y2 + λxy + 9x + (λ − 6) y + 3 = 0 is
The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is
The equation of the incircle formed by the coordinate axes and the line 4x + 3y = 6 is
The equation of a circle with radius 5 and touching both the coordinate axes is
The equation of the circle concentric with x2 + y2 − 3x + 4y − c = 0 and passing through (−1, −2) is
The equation of the circle which touches the axes of coordinates and the line \[\frac{x}{3} + \frac{y}{4} = 1\] and whose centres lie in the first quadrant is x2 + y2 − 2cx − 2cy + c2 = 0, where c is equal to
If the circles x2 + y2 = a and x2 + y2 − 6x − 8y + 9 = 0, touch externally, then a =
If (−3, 2) lies on the circle x2 + y2 + 2gx + 2fy + c = 0 which is concentric with the circle x2 + y2 + 6x + 8y − 5 = 0, then c =
Equation of the circle through origin which cuts intercepts of length a and b on axes is
The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2, 3y = 4x, 2y = 3x is ______.
Equation of a circle which passes through (3, 6) and touches the axes is ______.
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is ______.